HOMEWORK 1

SHUANGLIN SHAO

ABSTRACT. Please send me an email if you find mistakes. Thanks.

1. P 5. #1.1

Proof. We prove it by math induction. For n = 1, both sides equal to 1.

Suppose the claim is true for n € N. We prove that it is true for n + 1. We
consider

1
1+2+---+n2+(n+1)2:671(71+1)(2n+1)+(n+1)2

by the induction hypothesis. We simplify it further to obtain

= é(n-ﬁ-l) (2n® +n+6n+6) = é(n+1)(n+2)(2n+3) = é(n—l—l)[(n-ﬁ-l)—l—l] [2(n+1)+1].

Thus we prove that

1
1+22+32+---+n2:6n(n+1)(2n+1).

2. P 5. #1.7

Proof. We prove it by math induction. For n = 1, it is 7" —6n — 1 = 0,
which is divided by 36.
Suppose the claim is true for n € N. That is to say,
7" —6n — 1 = 36k,
for some k£ € N. We consider
7 _6(n+1)—1=7Tx7T"—6n—7 = 7(6n+1+36k) —6n—7 = 36n+36 x 7k

which is divisible by 36. Therefore we prove the claim. U
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3. P5. # 1.12

Proof. Part (a). We skip it.

Part (b). By the formula,

(£) =

Then

(£)+(e")

n! n! n! 1 1
TR TG D G-1) k=1l —R) <k+ n—k+1>
n! n+1
T h=Dn—k)k(n—k—+1)
(n+1)!
Ckl(n—k+1)

[ n+1

= y )

Part (c). The claim is true for n = 1. Suppose that it is true for n. Then

for n + 1,

b)"* = (a+b)"(a+b)

>a"—|— < " )a”_1b+---+( " >ab”_1+ ( " >b"> (a+b)
1 n—1 n

n

k

n—kik _ . n n+l—-kik - n n—kpk+1
)a b(a+b)—k_0<k>a b+z<k>a b

k=0

:an+1+z<< Z>+<kﬁl )>Gn+1—kbk+bn+1
AR U PR A RS B NP n+1l\
—( 0 )a +Z< k )a b + natl b

_ < ”Z 1 > QD) —kpk
k=0

This proves the claim. O



4. P.13. # 2.3

Proof. Let r = /24 v/2. Then
r?2—2=1+/2.
Then
(r*—2)>=(V2)?*=2.
We simplify it to obtain
rt—4r? £ 2=0.
If r is a rational number, then r divides 2 and r is an integer. So there are

4 possibilities of 2, +1 and +2. However r = /2 + /2 is not one of them.
This is a contradiction. It proves that r is not a rational number. O

5. P.13. # 2.7.

Proof. We complete squares to prove that these are rational numbers. Since

442V3=(V3+1)%
442V3—-V3=(1+V3)—V3=1.

Similarly one can also prove that /6 + 44/2 — /2 is a rational number. O

6. P.19. # 3.1.

Proof. (a).For N, A3, A4, M4 fail.

(b). For Z, M4 fails.

7. P.19,# 3.5.

Proof. (a). Since |b| < a, we prove that —a < b < a.

If b> 0,0 <a, b<a. On the other hand, if b < 0, [b| = —b,
-b<a.
Hence —a < b. Together we have

—a<b<a.
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To prove the converse direction, If b > 0,

|b| =b < a.
If b <0, since —a < b,
b = —b < a.
This proves that —a < b < a. O
8. P.19. # 3.8

Proof. We prove it by contradiction. If a > b, let € = %b. Then

a—b a-+b
b+e=0+ 5 = o5
This is a number strictly larger than b since € > 0. On other hand side,
a+b
2

which is strictly less than a. A contradiction. Therefore a < b. U

= a—€

9. P26. # 4.3 & # 4.4

Proof. For these two problems, we give several examples to show how we
achieve the supremum and the infimum.

For # 4.3, we take (a), (e), (k) and (w) as examples. For (a), sup = 1. For
(e), sup = 1. For (k), this set is not bounded and so there is no supremum.
For (w), since sin is a periodic function, there are only 3 values for sin 75"

for n € N:
V3 V3

0, 5
27 2

=

Therefore the supremum is

For # 4.4, we take (c), (i) and (n) as examples. For (c), inf = 2. For (i),
inf = 0. For (n), inf = —/2. O

10. P27. # 4.5

Proof. Firstly for any a € S, a < maxS. So max S is an upper bound.

Secondly for any upper bound « of S, since maxS € S, a > max 5. Then

by the definition of supremum, we see that max.S =sup S. U
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11. P27. # 4.9

Proof. Consider —S = {—z : # € S}. Then —S # (. By hypothesis, if S
is bounded below, then —S is bounded above. So sup(—S) exists, which we
denote by a. For x € S,
—zr<a,=x>—a.
For any lower bound 3 of S, —f is an upper bound of —S. Thus we see that
a=sup(—8) < —B,= —a > p.

Thus —a is the infimum of S, inf S = —a = —sup(—S9). O

12. P27. # 4.10

Proof. By Archemedian’s property, since a > 0, there exists ny € N such
that nia > 1. Hence a > n% On the other hand, for 1 > 0, there exists
ny € N such that ng x 1 > a. Therefore we take n = max{ni,n2} and obtain

1
—<a<n.
n

13. P27. # 4.12

Proof. Firstly there exists a rational number r € QQ such that a < r < b by
the density property of rational numbers in the real numbers. On the other
hand, since v/2 > 0, there exists n € N such that

n(b—r) > V2,
which implies that

V2

b—r>—.
n

We consider x = r + % that is irrational. Then z <r+ (b —1) =b.

a<x<b.



14. P27. # 4.12

Proof. (a).Since A and B are bounded sets, sup A and sup B exist; A+ B
is also a bounded set, therefore sup(A + B) exists.

For any a €€ (A+ B),a=x+y for x € A and y € B. Therefore
a=x+y <supA+supB,

which implies that,
sup(A + B) < sup A + sup B.

On the other hand, for any x € Aand y € B,z +y € A+ B.
x4y <sup(A+ B).
Fix y, the above implies that
x <sup(A+ B) —y.
Therefore
sup A <sup(A+ B) —y.
To continue, we rewrite it as follows,
y <sup(A+ B) —sup A.

which implies,
sup A 4+ sup B < sup(A + B).

Therefore
sup A + sup B = sup(A + B).
(b). This follows from part (a) and Ex. 4.9. O
15. P28. # 4.16
Proof. This follows from density of rational numbers in R. O

16. P30. # 5.4

Proof. By Ex. 4.9, we just need to prove the case where inf S = —oo. This
is the case where S is not bounded below. So —S is not bounded above. So

sup(—S) = +oo.

Hence
inf S = —sup(—95).



DEPARTMENT OF MATHEMATICS, KU, LAWRENCE, KS 66045

FE-mail address: slshao@math.ku.edu



