
HOMEWORK 1

SHUANGLIN SHAO

Abstract. Please send me an email if you find mistakes. Thanks.

1. P 5. #1.1

Proof. We prove it by math induction. For n = 1, both sides equal to 1.

Suppose the claim is true for n ∈ N. We prove that it is true for n+ 1. We
consider

1 + 2 + · · ·+ n2 + (n+ 1)2 =
1

6
n(n+ 1)(2n+ 1) + (n+ 1)2

by the induction hypothesis. We simplify it further to obtain

=
1

6
(n+1)

(
2n2 + n+ 6n+ 6

)
=

1

6
(n+1)(n+2)(2n+3) =

1

6
(n+1)[(n+1)+1][2(n+1)+1].

Thus we prove that

1 + 22 + 32 + · · ·+ n2 =
1

6
n(n+ 1)(2n+ 1).

�

2. P 5. #1.7

Proof. We prove it by math induction. For n = 1, it is 7n − 6n − 1 = 0,
which is divided by 36.

Suppose the claim is true for n ∈ N. That is to say,

7n − 6n− 1 = 36k,

for some k ∈ N. We consider

7n+1−6(n+1)−1 = 7×7n−6n−7 = 7(6n+1+36k)−6n−7 = 36n+36×7k

which is divisible by 36. Therefore we prove the claim. �
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3. P5. # 1.12

Proof. Part (a). We skip it.

Part (b). By the formula,(
n
k

)
=

n!

k!(n− k)!
,

Then(
n
k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− (k − 1))!
=

n!

(k − 1)!(n− k)!

(
1

k
+

1

n− k + 1

)
=

n!

(k − 1)!(n− k)!

n+ 1

k(n− k + 1)

=
(n+ 1)!

k!(n− k + 1)

=

(
n+ 1
k

)
.

Part (c). The claim is true for n = 1. Suppose that it is true for n. Then
for n+ 1,

(a+ b)n+1 = (a+ b)n(a+ b)

=

((
n
0

)
an +

(
n
1

)
an−1b+ · · ·+

(
n

n− 1

)
abn−1 +

(
n
n

)
bn
)

(a+ b)

=

n∑
k=0

(
n
k

)
an−kbk(a+ b) =

n∑
k=0

(
n
k

)
an+1−kbk +

n∑
k=0

(
n
k

)
an−kbk+1

= an+1 +

n∑
k=1

((
n
k

)
+

(
n

k − 1

))
an+1−kbk + bn+1

=

(
n+ 1

0

)
an+1 +

n∑
k=1

(
n+ 1
k

)
an+1−kbk +

(
n+ 1
n+ 1

)
bn+1

=
n+1∑
k=0

(
n+ 1
k

)
a(n+1)−kbk.

This proves the claim. �
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4. P.13. # 2.3

Proof. Let r =
√

2 +
√

2. Then

r2 − 2 =
√

2.

Then

(r2 − 2)2 = (
√

2)2 = 2.

We simplify it to obtain

r4 − 4r2 + 2 = 0.

If r is a rational number, then r divides 2 and r is an integer. So there are

4 possibilities of 2, ±1 and ±2. However r =
√

2 +
√

2 is not one of them.
This is a contradiction. It proves that r is not a rational number. �

5. P.13. # 2.7.

Proof. We complete squares to prove that these are rational numbers. Since
4 + 2

√
3 = (

√
3 + 1)2,√

4 + 2
√

3−
√

3 = (1 +
√

3)−
√

3 = 1.

Similarly one can also prove that
√

6 + 4
√

2−
√

2 is a rational number. �

6. P.19. # 3.1.

Proof. (a).For N, A3, A4, M4 fail.

(b). For Z, M4 fails.

�

7. P.19,# 3.5.

Proof. (a). Since |b| ≤ a, we prove that −a ≤ b ≤ a.

If b ≥ 0, 0 ≤ a, b ≤ a. On the other hand, if b < 0, |b| = −b,

−b ≤ a.

Hence −a ≤ b. Together we have

−a ≤ b ≤ a.
3



To prove the converse direction, If b ≥ 0,

|b| = b ≤ a.

If b < 0, since −a ≤ b,
|b| = −b ≤ a.

This proves that −a ≤ b ≤ a. �

8. P. 19. # 3.8

Proof. We prove it by contradiction. If a > b, let ε = a−b
2 . Then

b+ ε = b+
a− b

2
=
a+ b

2
.

This is a number strictly larger than b since ε > 0. On other hand side,

a+ b

2
= a− ε

which is strictly less than a. A contradiction. Therefore a ≤ b. �

9. P26. # 4.3 & # 4.4

Proof. For these two problems, we give several examples to show how we
achieve the supremum and the infimum.

For # 4.3, we take (a), (e), (k) and (w) as examples. For (a), sup = 1. For
(e), sup = 1. For (k), this set is not bounded and so there is no supremum.
For (w), since sin is a periodic function, there are only 3 values for sin nπ

3
for n ∈ N:

0,

√
3

2
,−
√

3

2
.

Therefore the supremum is
√
3
2 .

For # 4.4, we take (c), (i) and (n) as examples. For (c), inf = 2. For (i),
inf = 0. For (n), inf = −

√
2. �

10. P27. # 4.5

Proof. Firstly for any a ∈ S, a ≤ maxS. So maxS is an upper bound.
Secondly for any upper bound α of S, since maxS ∈ S, α ≥ maxS. Then
by the definition of supremum, we see that maxS = supS. �
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11. P27. # 4.9

Proof. Consider −S = {−x : x ∈ S}. Then −S 6= ∅. By hypothesis, if S
is bounded below, then −S is bounded above. So sup(−S) exists, which we
denote by a. For x ∈ S,

−x ≤ a,⇒ x ≥ −a.

For any lower bound β of S, −β is an upper bound of −S. Thus we see that

a = sup(−S) ≤ −β,⇒ −a ≥ β.

Thus −a is the infimum of S, inf S = −a = − sup(−S). �

12. P27. # 4.10

Proof. By Archemedian’s property, since a > 0, there exists n1 ∈ N such
that n1a > 1. Hence a > 1

n1
. On the other hand, for 1 > 0, there exists

n2 ∈ N such that n2×1 > a. Therefore we take n = max{n1, n2} and obtain

1

n
< a < n.

�

13. P27. # 4.12

Proof. Firstly there exists a rational number r ∈ Q such that a < r < b by
the density property of rational numbers in the real numbers. On the other
hand, since

√
2 > 0, there exists n ∈ N such that

n(b− r) >
√

2,

which implies that

b− r >
√

2

n
.

We consider x = r +
√
2
n that is irrational. Then x < r + (b− r) = b.

a < x < b.

�
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14. P27. # 4.12

Proof. (a).Since A and B are bounded sets, supA and supB exist; A + B
is also a bounded set, therefore sup(A+B) exists.

For any a ∈∈ (A+B), a = x+ y for x ∈ A and y ∈ B. Therefore

a = x+ y ≤ supA+ supB,

which implies that,

sup(A+B) ≤ supA+ supB.

On the other hand, for any x ∈ A and y ∈ B, x+ y ∈ A+B.

x+ y ≤ sup(A+B).

Fix y, the above implies that

x ≤ sup(A+B)− y.
Therefore

supA ≤ sup(A+B)− y.
To continue, we rewrite it as follows,

y ≤ sup(A+B)− supA.

which implies,
supA+ supB ≤ sup(A+B).

Therefore
supA+ supB = sup(A+B).

(b). This follows from part (a) and Ex. 4.9. �

15. P28. # 4.16

Proof. This follows from density of rational numbers in R. �

16. P30. # 5.4

Proof. By Ex. 4.9, we just need to prove the case where inf S = −∞. This
is the case where S is not bounded below. So −S is not bounded above. So

sup(−S) = +∞.
Hence

inf S = − sup(−S).

�
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