HOMEWORK 1

SHUANGLIN SHAO

Abstract. Please send me an email if you find mistakes. Thanks.

1. P 5. \#1.1

Proof. We prove it by math induction. For $n=1$, both sides equal to 1 .
Suppose the claim is true for $n \in \mathbb{N}$. We prove that it is true for $n+1$. We consider

$$
1+2+\cdots+n^{2}+(n+1)^{2}=\frac{1}{6} n(n+1)(2 n+1)+(n+1)^{2}
$$

by the induction hypothesis. We simplify it further to obtain

$$
=\frac{1}{6}(n+1)\left(2 n^{2}+n+6 n+6\right)=\frac{1}{6}(n+1)(n+2)(2 n+3)=\frac{1}{6}(n+1)[(n+1)+1][2(n+1)+1]
$$

Thus we prove that

$$
1+2^{2}+3^{2}+\cdots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

2. P 5. \#1.7

Proof. We prove it by math induction. For $n=1$, it is $7^{n}-6 n-1=0$, which is divided by 36 .

Suppose the claim is true for $n \in \mathbb{N}$. That is to say,

$$
7^{n}-6 n-1=36 k
$$

for some $k \in \mathbb{N}$. We consider
$7^{n+1}-6(n+1)-1=7 \times 7^{n}-6 n-7=7(6 n+1+36 k)-6 n-7=36 n+36 \times 7 k$ which is divisible by 36 . Therefore we prove the claim.
3. P5. \# 1.12

Proof. Part (a). We skip it.
Part (b). By the formula,

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!},
$$

Then

$$
\begin{aligned}
& \binom{n}{k}+\binom{n}{k-1} \\
& =\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-(k-1))!}=\frac{n!}{(k-1)!(n-k)!}\left(\frac{1}{k}+\frac{1}{n-k+1}\right) \\
& =\frac{n!}{(k-1)!(n-k)!} \frac{n+1}{k(n-k+1)} \\
& =\frac{(n+1)!}{k!(n-k+1)} \\
& =\binom{n+1}{k} .
\end{aligned}
$$

Part (c). The claim is true for $n=1$. Suppose that it is true for n. Then for $n+1$,

$$
\begin{aligned}
& (a+b)^{n+1}=(a+b)^{n}(a+b) \\
& =\left(\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\cdots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} b^{n}\right)(a+b) \\
& =\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}(a+b)=\sum_{k=0}^{n}\binom{n}{k} a^{n+1-k} b^{k}+\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k+1} \\
& =a^{n+1}+\sum_{k=1}^{n}\left(\binom{n}{k}+\binom{n}{k-1}\right) a^{n+1-k} b^{k}+b^{n+1} \\
& =\binom{n+1}{0} a^{n+1}+\sum_{k=1}^{n}\binom{n+1}{k} a^{n+1-k} b^{k}+\binom{n+1}{n+1} b^{n+1} \\
& =\sum_{k=0}^{n+1}\binom{n+1}{k} a^{(n+1)-k} b^{k} .
\end{aligned}
$$

This proves the claim.

$$
\text { 4. P.13. \# } 2.3
$$

Proof. Let $r=\sqrt{2+\sqrt{2}}$. Then

$$
r^{2}-2=\sqrt{2} .
$$

Then

$$
\left(r^{2}-2\right)^{2}=(\sqrt{2})^{2}=2
$$

We simplify it to obtain

$$
r^{4}-4 r^{2}+2=0 .
$$

If r is a rational number, then r divides 2 and r is an integer. So there are 4 possibilities of $2, \pm 1$ and ± 2. However $r=\sqrt{2+\sqrt{2}}$ is not one of them. This is a contradiction. It proves that r is not a rational number.
5. P.13. \# 2.7.

Proof. We complete squares to prove that these are rational numbers. Since $4+2 \sqrt{3}=(\sqrt{3}+1)^{2}$,

$$
\sqrt{4+2 \sqrt{3}}-\sqrt{3}=(1+\sqrt{3})-\sqrt{3}=1 .
$$

Similarly one can also prove that $\sqrt{6+4 \sqrt{2}}-\sqrt{2}$ is a rational number.
6. P.19. \# 3.1.

Proof. (a).For $\mathbb{N}, \mathrm{A} 3, \mathrm{~A} 4, \mathrm{M} 4$ fail.
(b). For $\mathbb{Z}, \mathrm{M} 4$ fails.
7. P.19,\# 3.5.

Proof. (a). Since $|b| \leq a$, we prove that $-a \leq b \leq a$.
If $b \geq 0,0 \leq a, b \leq a$. On the other hand, if $b<0,|b|=-b$,

$$
-b \leq a .
$$

Hence $-a \leq b$. Together we have

$$
-a \leq b \leq a
$$

To prove the converse direction, If $b \geq 0$,

$$
|b|=b \leq a .
$$

If $b<0$, since $-a \leq b$,

$$
|b|=-b \leq a .
$$

This proves that $-a \leq b \leq a$.
8. P. 19. \# 3.8

Proof. We prove it by contradiction. If $a>b$, let $\epsilon=\frac{a-b}{2}$. Then

$$
b+\epsilon=b+\frac{a-b}{2}=\frac{a+b}{2} .
$$

This is a number strictly larger than b since $\epsilon>0$. On other hand side,

$$
\frac{a+b}{2}=a-\epsilon
$$

which is strictly less than a. A contradiction. Therefore $a \leq b$.

9. P26. \# 4.3 \& \# 4.4

Proof. For these two problems, we give several examples to show how we achieve the supremum and the infimum.

For \# 4.3, we take (a), (e), (k) and (w) as examples. For (a), sup $=1$. For $(\mathrm{e}), \sup =1$. For (k), this set is not bounded and so there is no supremum. For (w), since \sin is a periodic function, there are only 3 values for $\sin \frac{n \pi}{3}$ for $n \in \mathbb{N}$:

$$
0, \frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2} .
$$

Therefore the supremum is $\frac{\sqrt{3}}{2}$.
For \# 4.4, we take (c), (i) and (n) as examples. For (c), inf $=2$. For (i), $\inf =0$. For $(n), \inf =-\sqrt{2}$.
10. P27. \# 4.5

Proof. Firstly for any $a \in S, a \leq \max S$. So $\max S$ is an upper bound. Secondly for any upper bound α of S, since $\max S \in S, \alpha \geq \max S$. Then by the definition of supremum, we see that $\max S=\sup S$.

$$
\text { 11. P27. \# } 4.9
$$

Proof. Consider $-S=\{-x: x \in S\}$. Then $-S \neq \emptyset$. By hypothesis, if S is bounded below, then $-S$ is bounded above. $\operatorname{So} \sup (-S)$ exists, which we denote by a. For $x \in S$,

$$
-x \leq a, \Rightarrow x \geq-a
$$

For any lower bound β of $S,-\beta$ is an upper bound of $-S$. Thus we see that

$$
a=\sup (-S) \leq-\beta, \Rightarrow-a \geq \beta
$$

Thus $-a$ is the infimum of $S, \inf S=-a=-\sup (-S)$.
12. P27. \# 4.10

Proof. By Archemedian's property, since $a>0$, there exists $n_{1} \in \mathbb{N}$ such that $n_{1} a>1$. Hence $a>\frac{1}{n_{1}}$. On the other hand, for $1>0$, there exists $n_{2} \in \mathbb{N}$ such that $n_{2} \times 1>a$. Therefore we take $n=\max \left\{n_{1}, n_{2}\right\}$ and obtain

$$
\frac{1}{n}<a<n .
$$

13. P27. \# 4.12

Proof. Firstly there exists a rational number $r \in \mathbb{Q}$ such that $a<r<b$ by the density property of rational numbers in the real numbers. On the other hand, since $\sqrt{2}>0$, there exists $n \in \mathbb{N}$ such that

$$
n(b-r)>\sqrt{2},
$$

which implies that

$$
b-r>\frac{\sqrt{2}}{n} .
$$

We consider $x=r+\frac{\sqrt{2}}{n}$ that is irrational. Then $x<r+(b-r)=b$.

$$
a<x<b .
$$

Proof. (a). Since A and B are bounded sets, $\sup A$ and $\sup B$ exist; $A+B$ is also a bounded set, therefore $\sup (A+B)$ exists.

For any $a \in \in(A+B), a=x+y$ for $x \in A$ and $y \in B$. Therefore

$$
a=x+y \leq \sup A+\sup B,
$$

which implies that,

$$
\sup (A+B) \leq \sup A+\sup B .
$$

On the other hand, for any $x \in A$ and $y \in B, x+y \in A+B$.

$$
x+y \leq \sup (A+B) .
$$

Fix y, the above implies that

$$
x \leq \sup (A+B)-y .
$$

Therefore

$$
\sup A \leq \sup (A+B)-y .
$$

To continue, we rewrite it as follows,

$$
y \leq \sup (A+B)-\sup A
$$

which implies,

$$
\sup A+\sup B \leq \sup (A+B) .
$$

Therefore

$$
\sup A+\sup B=\sup (A+B) .
$$

(b). This follows from part (a) and Ex. 4.9.

$$
\text { 15. P28. \# } 4.16
$$

Proof. This follows from density of rational numbers in \mathbb{R}.

$$
\text { 16. P30. \# } 5.4
$$

Proof. By Ex. 4.9, we just need to prove the case where inf $S=-\infty$. This is the case where S is not bounded below. So $-S$ is not bounded above. So

$$
\sup (-S)=+\infty
$$

Hence

$$
\inf S=-\sup (-S)
$$

Department of Mathematics, KU, Lawrence, KS 66045
E-mail address: slshao@math.ku.edu

