HOMEWORK 10

SHUANGLIN SHAO

Abstract. Please send me an email if you find mistakes. Thanks.

1. P296. \# 34.1

Proof. We follow the hint. Set $F(x)=\int_{a}^{x} g^{\prime}$. Then

$$
F^{\prime}(x)=g^{\prime}(x) .
$$

So

$$
(F-g)^{\prime}=0 .
$$

Therefore $F(x)-g(x)=C$ for some constant C. Let $x=a$. Then

$$
F(a)-g(a)=C .
$$

Since $F(a)=\int_{a}^{a} g^{\prime}=0$,

$$
C=-g(a) .
$$

Let $x=b$, we have

$$
F(b)=\int_{a}^{b} g^{\prime}=g(b)-g(a) .
$$

2. P296. \# 34.2

Proof. (a). Let $F(x)=\int_{0}^{x} e^{t^{2}} d t$. Then

$$
\lim \frac{1}{x} \int_{0}^{x} e^{t^{2}} d t=F^{\prime}(0)=e^{0}=1
$$

(b). Let $F(x)=\int_{0}^{x} e^{t^{2}} d t$. Then

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{3}^{3+h}=\lim _{h \rightarrow 0} \frac{F(3+h)-F(3)}{h}=F^{\prime}(3)=e^{3^{2}}=e^{9} .
$$

$$
\text { 3. P297. \# } 34.5
$$

Proof. We write

$$
G(x)=\int_{0}^{x} f(t) d t
$$

By Theorem 34.3, G is differentiable on \mathbb{R} and $G^{\prime}=f$.

$$
F(x)=\int_{0}^{x+1} f(t) d t-\int_{0}^{x-1} f(t) d t=G(x+1)-G(x-1) .
$$

Then F is differentiable on \mathbb{R}. Moreover by the chain rule,

$$
F^{\prime}(x)=f(x+1)-f(x-1) .
$$

4. P297. \# 34.6

Proof. This is similar to the previous exercise.

$$
G^{\prime}(x)=f(\sin x) \cos x .
$$

5. P297 \# 34.7

Proof. Let $u=1-x^{2}$. Then $d u=-2 x d x$. So

$$
\int_{0}^{1} x \sqrt{1-x^{2}}=\int_{0}^{1} \frac{\sqrt{u}}{2} d u=\frac{1}{2} \times\left.\frac{2}{3} u^{\frac{3}{2}}\right|_{0} ^{1}=\frac{1}{3} .
$$

6. P297 \# 34.11

Proof. We know that f^{2} is continuous since f is continuous. So by Theorem 33.4,

$$
\int_{a}^{b} f^{2}(x) d x=0
$$

implies $f^{2}=0$. So $f \equiv 0$.

Department of Mathematics, KU, Lawrence, KS 66045
E-mail address: slshao@ku.edu

