HOMEWORK 2

SHUANGLIN SHAO

Abstract. Please send me an email if you find mistakes. Thanks.

1. P38. $\# 7.3$

Proof. The sequences in (b), (d), (f), (j),(p),(r), (t) converge; their limits are $1,1,1, \frac{7}{2}, 2,1$ and 0 , respectively.

The limit in (h) diverges because it is not bounded.
The limit in (l) diverges because it is a sequence consisting of $0,1,-1$; the limit in (\mathbf{n}) diverges because it is a sequence consisting of $0, \frac{\sqrt{3}}{2}$ and $-\frac{\sqrt{3}}{2}$. You can refer to Example 4 in Section 8 for a discussion.

P38. \# 7.4

Proof. (a). $\quad x_{n}=\frac{1}{n \sqrt{2}}$; Then

$$
\lim _{n \rightarrow \infty} x_{n}=0
$$

(b). $\quad r_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}$. Then

$$
\lim _{n \rightarrow \infty} r_{n}=\frac{\pi^{2}}{6}
$$

2. P44. \# 8.2

Proof. (b). $\quad \lim _{n \rightarrow \infty} b_{n}=\frac{7}{3}$. For any $\epsilon>0$, we need to find $N \in \mathbb{N}$ such that for any $n \geq N$,

$$
\begin{equation*}
\left|\frac{7 n-19}{3 n+7}-\frac{7}{3}\right|<\epsilon \tag{1}
\end{equation*}
$$

In order for (3) to hold,

$$
n>\frac{106}{9 \epsilon}-\frac{7}{3} .
$$

So we take $N \in \mathbb{N}$ and $N>\frac{106}{9 \epsilon}-\frac{7}{3}$. To conclude, for any $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for $n \geq N$,

$$
\left|\frac{7 n-19}{3 n+7}-\frac{7}{3}\right|<\epsilon .
$$

Similarly in (d),

$$
\lim _{n \rightarrow \infty} d_{n}=\frac{2}{5} .
$$

3. P44. \# 8.4

Proof. $\lim _{n \rightarrow \infty} s_{n}=0$: for any $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for $n \geq N$,

$$
\left|s_{n}-0\right| \leq \frac{\epsilon}{M+1} .
$$

Then

$$
\left|s_{n} t_{n}-0\right| \leq\left|t_{n}\right|\left|s_{n}\right| \leq M \frac{\epsilon}{M+1}<\epsilon .
$$

This proves that $\lim _{n \rightarrow \infty} s_{n} t_{n}=0$.
4. P44. \# 8.5(A)(B).

Proof. (a). This is proven in class. Please refer to the class notes.
(b). $\lim _{n \rightarrow \infty} t_{n}=0$: for any $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for any $n \geq N$,

$$
\left|t_{n}-0\right|=t_{n}<\epsilon .
$$

Since $\left|s_{n}\right| \leq t_{n}$,

$$
\left|s_{n}-0\right|<\epsilon .
$$

Therefore

$$
\lim _{n \rightarrow \infty} s_{n}=0
$$

5. P44. \# 8.6

Proof. (a) (b).This is proven in class. Please refer to the class notes.

$$
\text { 6. P45. \# } 8.8
$$

Proof. (a).

$$
0 \leq \sqrt{n^{2}+1}-n=\frac{1}{\sqrt{n^{2}+1}+n} \leq \frac{1}{n} .
$$

Since $\lim _{n \rightarrow \infty} \frac{1}{n}=0$,

$$
\lim _{n \rightarrow \infty} \sqrt{n^{2}+1}-n=0
$$

(b).For any $\epsilon>0$, we need to find $N \in \mathbb{N}$ such that for any $n \geq N$,

$$
\begin{equation*}
\left|\left(\sqrt{n^{2}+n}-n\right)-\frac{1}{2}\right|<\epsilon . \tag{2}
\end{equation*}
$$

We know that

$$
\left|\left(\sqrt{n^{2}+n}-n\right)-\frac{1}{2}\right|=\left|\frac{n}{\sqrt{n^{2}+n}+n}-\frac{1}{2}\right|=\frac{n}{2\left(\sqrt{n^{2}+n}+n\right)^{2}} \leq \frac{1}{2 n} .
$$

In order for (2) to hold, it suffices that

$$
\frac{1}{2 n}<\epsilon, \text { i.e., } n>\frac{1}{2 \epsilon} \text {. }
$$

We can take $N \in \mathbb{N}$ and $N>\frac{1}{2 \epsilon}$.
The proof in (c) is similar.

7. P54. \# 9.4

Proof. (a). $s_{1}=1, s_{2}=\sqrt{2}, s_{3}=\sqrt{\sqrt{2}+1}, s_{4}=\sqrt{\sqrt{\sqrt{2}+1}}$.
(b). Let $A=\lim _{n \rightarrow \infty} s_{n}$. Then taking limits on both sides of $s_{n+1}=$ $\sqrt{s_{n}+1}$.

$$
A=\sqrt{A+1}
$$

Therefore

$$
A^{2}-A-1=0 .
$$

So $A=\frac{1 \pm \sqrt{5}}{2}$. Since $A \geq 0$, we see that

$$
A=\frac{1+\sqrt{5}}{2} .
$$

Proof. Let $A=\lim _{n \rightarrow \infty} t_{n}$. Obviously by math induction $t_{n} \geq 0$; then $t_{n+1} \geq \frac{2 \sqrt{2} t_{n}}{2 t_{n}} \geq \sqrt{2}$. Taking limits on both sides of $t_{n+1}=\frac{t_{n}^{2}+2}{2 t_{n}}$, we see that

$$
A=\frac{A^{2}+2}{2 A} .
$$

This proves that

$$
A=\sqrt{2} .
$$

9. P55. \#9.9

Proof. (a). If $\lim _{n \rightarrow \infty} s_{n}=\infty$, for any $M>0$, there exists $N_{1} \in \mathbb{N}$ such that for any $n \geq N_{1}$,

$$
s_{n} \geq M .
$$

Taking $n \geq \max \left\{N_{0}, N_{1}\right\}$ and then we see that

$$
t_{n} \geq M .
$$

This proves that $\lim _{n \rightarrow \infty} t_{n}=\infty$.
The claim in (b) is proven similarly.
(c). For the claim in (c), we prove it by contradiction. Suppose that $\lim _{n \rightarrow \infty} s_{n}>\lim _{n \rightarrow \infty} t_{n}$. If $\lim _{n \rightarrow \infty} s_{n}=+\infty$, then by (a), we see that $\lim _{n \rightarrow \infty} t_{n}=\infty$, A contradiction. if $\lim _{n \rightarrow \infty} t_{n}=-\infty$, then $\lim _{n \rightarrow \infty} s_{n}=$ $-\infty$, A contradiction. So we may assume that $-\infty<\lim _{n \rightarrow \infty} t_{n}<\lim _{n \rightarrow \infty} s_{n}<$ ∞. Let

$$
A=\lim _{n \rightarrow \infty} t_{n}, B=\lim _{n \rightarrow \infty} s_{n} .
$$

Let $\epsilon=\frac{B-A}{4}$. For this $\epsilon>0$, there exists $N_{1} \in \mathbb{N}$ such that for $n \geq N_{1}$,

$$
A-\epsilon<t_{n}<A+\epsilon=\frac{B+3 A}{4} .
$$

Also for this $\epsilon>0$, there exists $N_{2} \in \mathbb{N}$ such that for $n \geq N_{2}$,

$$
\frac{A+3 B}{4}=B-\epsilon<s_{n}<B+\epsilon .
$$

Since $A<B$,

$$
\frac{3 A+B}{4}<\frac{B+3 A}{4}
$$

Therefore for $n \geq \max \left\{N_{1}, N_{2}\right\}, t_{n}<s_{n}$, A contradiciton.

$$
\text { 10. P55. \# } 9.11
$$

Proof. (a). Let

$$
B=\inf \left\{t_{n}: n \in \mathbb{N}\right\} .
$$

As an infimum of real numbers,

$$
B<\infty
$$

So

$$
-\infty<B<\infty .
$$

Since $\lim _{n \rightarrow \infty} s_{n}=\infty$, for any $M>0$, there exists $N \in \mathbb{N}$ such that for $n \geq N$,

$$
s_{n}>M-B .
$$

Since $B=\inf \left\{t_{n}: n \in \mathbb{N}\right\}, t_{n} \geq B$. Therefore

$$
s_{n}+t_{n}>M,
$$

which implies that $\lim _{n \rightarrow \infty}\left(s_{n}+t_{n}\right)=\infty$.
(b). The case where $\lim _{n \rightarrow \infty} t_{n}<\infty$ is proven similarly as in (a). We discuss the case where $\lim _{n \rightarrow \infty} t_{n}=\infty$. For $M>0$, there exists $N \in \mathbb{N}$ such that for $n \geq N$,

$$
s_{n}>\frac{M}{2}, t_{n}>\frac{M}{2} .
$$

So we have

$$
s_{n}+t_{n}>\frac{M}{2}+\frac{M}{2}=M .
$$

Therefore we have

$$
\lim _{n \rightarrow \infty}\left(s_{n}+t_{n}\right)=+\infty
$$

The claim in (c) is proven similarly.
11. P56. \# 9.15

Proof. If $a=0$, then $\frac{a^{n}}{n!}=0$. So $\lim _{n \rightarrow \infty} \frac{a^{n}}{n!}=0$.
If $a \in \mathbb{R}$ and $a \neq 0$, we prove that

$$
\lim _{n \rightarrow \infty}\left|\frac{a^{n}}{n!}\right|=\lim _{n \rightarrow \infty} \frac{|a|^{n}}{n!}=0 .
$$

We write

$$
\frac{|a|^{n}}{n!}=\frac{|a| \times \cdots \times|a|}{1 \times 2 \times \cdots \times n}=\underset{5}{|a| \times \frac{|a|}{2} \times \frac{|a|}{3} \times \cdots \times \frac{|a|}{n} .}
$$

Then

$$
\frac{|a|^{n}}{n!} \leq|a|^{n-1} \frac{|a|}{n}
$$

Therefore

$$
\lim _{n \rightarrow \infty} \frac{|a|^{n}}{n!}=0
$$

12. P56. \# 9.18

Proof. The proof is skipped.
13. P64. \# 10.1

Proof. In (a), $\frac{1}{n}$ is a decreasing and bounded sequence.
In (b), $\frac{(-1)^{n}}{n^{2}}$ is a bounded sequence.
In (c), n^{5} is an increasing sequence.
In (d) $\sin \frac{n \pi}{7}$ is a bounded sequence.
In (e), $(-2)^{n}$ is neither increasing nor decreasing; it is not bounded either.
In (f), $\frac{n}{3^{n}}$ is a decreasing and bounded sequence.
14. P65. \# 10.3

Proof. We recall that $s_{n}=K+\frac{d_{1}}{10}+\cdots+\frac{d_{n}}{10^{n}}$ for all n. Since each d_{j} belongs to the set $\{0,1,2, \cdots, 9\}$, we see that $0 \leq d_{j} \leq 9$. So

$$
s_{n} \leq K+\frac{9}{10}+\frac{9}{10^{2}}+\cdots+\frac{9}{10^{n}}=K+1-\frac{1}{10^{n}}<K+1 .
$$

15. P65. \# 10.6

Proof. (a). Since $\sum_{n=1}^{\infty} 2^{-n}=1$, for any $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for $n \geq N$,

$$
\sum_{n \geq N} \frac{1}{2^{n}}<\epsilon
$$

For $m>n \geq N$,

$$
\begin{align*}
& \quad\left|s_{m}-s_{n}\right|=\left|s_{m}-s_{m-1}+s_{m-1}-s_{m-2}+\cdots+s_{n+1}-s_{n}\right| \tag{3}\\
& \quad \leq\left|s_{m}-s_{m-1}\right|+\cdots+\left|s_{n+1}-s_{n}\right| \\
& \leq \sum_{n \geq N} \frac{1}{2^{n}}<\epsilon
\end{align*}
$$

Therefore we prove that $\left\{s_{n}\right\}$ is a Cauchy sequence. Hence it is convergent.
(b). We assume that $s_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Then $\left\{s_{n}\right\}$ satisfies the condition

$$
\left|s_{n+1}-s_{n}\right|=\frac{1}{n+1}<\frac{1}{n} .
$$

However $\sum_{k=1}^{\infty} \frac{1}{k}$ is a harmonic series.

16. P65. \# 10.7

Proof. By the completeness Axiom, $\alpha=\sup S$ exists. For any $\frac{1}{n}>0$, there exists $\alpha-\frac{1}{n}$ is not an upper bound, i.e., there exists $s_{n} \in S$ such that

$$
\alpha-\frac{1}{n}<s_{n} \leq \alpha \leq \alpha+\frac{1}{n} .
$$

By the squeezing theorem,

$$
\lim _{n \rightarrow \infty} s_{n}=\alpha=\sup S .
$$

17. P65. \# 10.9

Proof. (a). $\quad s_{1}=1, s_{2}=\frac{1}{2}, s_{3}=\frac{1}{6}, s_{4}=\frac{1}{48}$.
(b). Firstly $s_{n} \geq 0$. Then we prove that $\left\{s_{n}\right\}_{n \geq 1}$ is a decreasing sequence. Then by the monotone convergence theorem, we see that $\lim _{n \rightarrow \infty} s_{n}$ exists.

Indeed,

$$
\begin{align*}
s_{n+2}-s_{n+1} & =\frac{n+1}{n+2} s_{n+1}^{2}-\frac{n}{n+1} s_{n}^{2} \\
& \leq \frac{n}{n+1} s_{n+1}^{2}-\frac{n+1}{n+2} s_{n}^{2} \\
& =\frac{n+1}{n+2}\left(s_{n+1}^{2}-s_{n}^{2}\right) \tag{4}\\
& =\frac{n+1}{n+2}\left(s_{n+1}+s_{n}\right)\left(s_{n+1}-s_{n}\right)
\end{align*}
$$

Since $s_{2}-s_{1} \leq 0$, inductively we prove that $s_{n+1} \leq s_{n}$ for all n. Therefore $\left\{s_{n}\right\}_{n \geq 1}$ is decreasing.
(c). In (b), we have proved that $\alpha=\lim _{n \rightarrow \infty} s_{n}$ exists. Taking limits on both sides of $s_{n+1}=\frac{n}{n+1} s_{n}^{2}$, we see that

$$
\alpha=\alpha^{2}
$$

which implies that

$$
\alpha=0, \alpha=1
$$

Since $s_{2}=\frac{1}{2}$ and $\left\{s_{n}\right\}_{n \geq 1}$ is a decreasing sequence, we see

$$
\alpha=0
$$

18. P66. \# 10.12

Proof. (a). $\quad t_{n} \geq 0$ for all n, and $t_{n+1} \leq t_{n}$ for all $n \in \mathbb{N}$. This proves that $\left\{t_{n}\right\}$ is a bounded and decreasing sequence. Therefore by the monotone convergence theorem, $\lim _{n \rightarrow \infty} t_{n}$ exists.
(b). From (c), $\lim _{n \rightarrow \infty} t_{n}=\frac{1}{2}$.
(c). From $t_{n+1}=\frac{n(n+2)}{(n+1)^{2}}=\frac{n+2}{n+1} \times \frac{n+1}{n}$, by math induction, we prove that $t_{n}=\frac{n+1}{2 n}$.

Alternatively,

$$
\begin{align*}
t_{n} & =\frac{n+1}{n} \times \frac{n-1}{n} \times \frac{n}{n-1} \times \frac{n-2}{n-1} \times \cdots \times t_{2} \\
& =\frac{n+1}{n} \times \frac{n-1}{n} \times \frac{n}{n-1} \times \frac{n-2}{n-1} \times \cdots \times \frac{3}{2} \times \frac{1}{2} \tag{5}\\
& =\frac{n+1}{2 n}
\end{align*}
$$

(d). From (c), $\lim _{n \rightarrow \infty} t_{n}=\frac{1}{2}$.

Department of Mathematics, KU, Lawrence, KS 66045

E-mail address: slshao@math.ku.edu

