
HOMEWORK 2

SHUANGLIN SHAO

Abstract. Please send me an email if you find mistakes. Thanks.

1. P38. #7.3

Proof. The sequences in (b), (d), (f), (j),(p),(r), (t) converge; their limits
are 1, 1, 1, 72 , 2, 1 and 0, respectively.

The limit in (h) diverges because it is not bounded.

The limit in (l) diverges because it is a sequence consisting of 0, 1,−1; the

limit in (n) diverges because it is a sequence consisting of 0,
√
3
2 and −

√
3
2 .

You can refer to Example 4 in Section 8 for a discussion. �

P38. # 7.4

Proof. (a). xn = 1
n
√
2
; Then

lim
n→∞

xn = 0.

(b). rn =
∑n

k=1
1
k2

. Then

lim
n→∞

rn =
π2

6
.

�

2. P44. # 8.2

Proof. (b). limn→∞ bn = 7
3 . For any ε > 0, we need to find N ∈ N such

that for any n ≥ N ,

(1)

∣∣∣∣7n− 19

3n+ 7
− 7

3

∣∣∣∣ < ε.
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In order for (3) to hold,

n >
106

9ε
− 7

3
.

So we take N ∈ N and N > 106
9ε −

7
3 . To conclude, for any ε > 0, there exists

N ∈ N such that for n ≥ N ,∣∣∣∣7n− 19

3n+ 7
− 7

3

∣∣∣∣ < ε.

Similarly in (d),

lim
n→∞

dn =
2

5
.

�

3. P44. # 8.4

Proof. limn→∞ sn = 0: for any ε > 0, there exists N ∈ N such that for
n ≥ N ,

|sn − 0| ≤ ε

M + 1
.

Then

|sntn − 0| ≤ |tn||sn| ≤M
ε

M + 1
< ε.

This proves that limn→∞ sntn = 0. �

4. P44. # 8.5(a)(b).

Proof. (a). This is proven in class. Please refer to the class notes.

(b). limn→∞ tn = 0: for any ε > 0, there exists N ∈ N such that for any
n ≥ N ,

|tn − 0| = tn < ε.

Since |sn| ≤ tn,

|sn − 0| < ε.

Therefore

lim
n→∞

sn = 0.

�

5. P44. # 8.6

Proof. (a) (b).This is proven in class. Please refer to the class notes. �
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6. P45. # 8.8

Proof. (a).

0 ≤
√
n2 + 1− n =

1√
n2 + 1 + n

≤ 1

n
.

Since limn→∞
1
n = 0,

lim
n→∞

√
n2 + 1− n = 0.

(b).For any ε > 0, we need to find N ∈ N such that for any n ≥ N ,

(2) |(
√
n2 + n− n)− 1

2
| < ε.

We know that

|(
√
n2 + n− n)− 1

2
| =

∣∣∣∣ n√
n2 + n+ n

− 1

2

∣∣∣∣ =
n

2(
√
n2 + n+ n)2

≤ 1

2n
.

In order for (2) to hold, it suffices that

1

2n
< ε, i.e., n >

1

2ε
.

We can take N ∈ N and N > 1
2ε. .

The proof in (c) is similar. �

7. P54. # 9.4

Proof. (a).s1 = 1, s2 =
√

2, s3 =
√√

2 + 1, s4 =

√√√
2 + 1.

(b). Let A = limn→∞ sn. Then taking limits on both sides of sn+1 =√
sn + 1.

A =
√
A+ 1.

Therefore

A2 −A− 1 = 0.

So A = 1±
√
5

2 . Since A ≥ 0, we see that

A =
1 +
√

5

2
.

�
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8. P54. # 9.5

Proof. Let A = limn→∞ tn. Obviously by math induction tn ≥ 0; then

tn+1 ≥ 2
√
2tn

2tn
≥
√

2. Taking limits on both sides of tn+1 = t2n+2
2tn

, we see that

A =
A2 + 2

2A
.

This proves that

A =
√

2.

�

9. P55. #9.9

Proof. (a). If limn→∞ sn = ∞, for any M > 0, there exists N1 ∈ N such
that for any n ≥ N1,

sn ≥M.

Taking n ≥ max{N0, N1} and then we see that

tn ≥M.

This proves that limn→∞ tn =∞.

The claim in (b) is proven similarly.

(c). For the claim in (c), we prove it by contradiction. Suppose that
limn→∞ sn > limn→∞ tn. If limn→∞ sn = +∞, then by (a), we see that
limn→∞ tn = ∞, A contradiction. if limn→∞ tn = −∞, then limn→∞ sn =
−∞, A contradiction. So we may assume that−∞ < limn→∞ tn < limn→∞ sn <
∞. Let

A = lim
n→∞

tn, B = lim
n→∞

sn.

Let ε = B−A
4 . For this ε > 0, there exists N1 ∈ N such that for n ≥ N1,

A− ε < tn < A+ ε =
B + 3A

4
.

Also for this ε > 0, there exists N2 ∈ N such that for n ≥ N2,

A+ 3B

4
= B − ε < sn < B + ε.

Since A < B,
3A+B

4
<
B + 3A

4
.

Therefore for n ≥ max{N1, N2}, tn < sn, A contradiciton. �
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10. P55. # 9.11

Proof. (a). Let

B = inf{tn : n ∈ N}.
As an infimum of real numbers,

B <∞.

So

−∞ < B <∞.
Since limn→∞ sn = ∞, for any M > 0, there exists N ∈ N such that for
n ≥ N ,

sn > M −B.
Since B = inf{tn : n ∈ N}, tn ≥ B. Therefore

sn + tn > M,

which implies that limn→∞(sn + tn) =∞.

(b). The case where limn→∞ tn < ∞ is proven similarly as in (a). We
discuss the case where limn→∞ tn = ∞. For M > 0, there exists N ∈ N
such that for n ≥ N ,

sn >
M

2
, tn >

M

2
.

So we have

sn + tn >
M

2
+
M

2
= M.

Therefore we have

lim
n→∞

(sn + tn) = +∞.

The claim in (c) is proven similarly. �

11. P56. # 9.15

Proof. If a = 0, then an

n! = 0. So limn→∞
an

n! = 0.

If a ∈ R and a 6= 0, we prove that

lim
n→∞

∣∣∣∣ann!

∣∣∣∣ = lim
n→∞

|a|n

n!
= 0.

We write

|a|n

n!
=
|a| × · · · × |a|

1× 2× · · · × n
= |a| × |a|

2
× |a|

3
× · · · × |a|

n
.
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Then
|a|n

n!
≤ |a|n−1 |a|

n
.

Therefore

lim
n→∞

|a|n

n!
= 0.

�

12. P56. # 9.18

Proof. The proof is skipped. �

13. P64. # 10.1

Proof. In (a), 1
n is a decreasing and bounded sequence.

In (b), (−1)n
n2 is a bounded sequence.

In (c), n5 is an increasing sequence.

In (d), sin nπ
7 is a bounded sequence.

In (e), (−2)n is neither increasing nor decreasing; it is not bounded either.

In (f), n
3n is a decreasing and bounded sequence. �

14. P65. # 10.3

Proof. We recall that sn = K+ d1
10 + · · ·+ dn

10n for all n. Since each dj belongs
to the set {0, 1, 2, · · · , 9}, we see that 0 ≤ dj ≤ 9. So

sn ≤ K +
9

10
+

9

102
+ · · ·+ 9

10n
= K + 1− 1

10n
< K + 1.

�

15. P65. # 10.6

Proof. (a). Since
∑∞

n=1 2−n = 1, for any ε > 0, there exists N ∈ N such
that for n ≥ N , ∑

n≥N

1

2n
< ε.
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For m > n ≥ N ,

|sm − sn| = |sm − sm−1 + sm−1 − sm−2 + · · ·+ sn+1 − sn|
≤ |sm − sm−1|+ · · ·+ |sn+1 − sn|

≤
∑
n≥N

1

2n
< ε.

(3)

Therefore we prove that {sn} is a Cauchy sequence. Hence it is convergent.

(b). We assume that sn =
∑n

k=1
1
k . Then {sn} satisfies the condition

|sn+1 − sn| =
1

n+ 1
<

1

n
.

However
∑∞

k=1
1
k is a harmonic series.

�

16. P65. # 10.7

Proof. By the completeness Axiom, α = supS exists. For any 1
n > 0, there

exists α− 1
n is not an upper bound, i.e., there exists sn ∈ S such that

α− 1

n
< sn ≤ α ≤ α+

1

n
.

By the squeezing theorem,

lim
n→∞

sn = α = supS.

�

17. P65. # 10.9

Proof. (a). s1 = 1, s2 = 1
2 , s3 = 1

6 , s4 = 1
48 .

(b). Firstly sn ≥ 0. Then we prove that {sn}n≥1 is a decreasing sequence.
Then by the monotone convergence theorem, we see that limn→∞ sn exists.
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Indeed,

sn+2 − sn+1 =
n+ 1

n+ 2
s2n+1 −

n

n+ 1
s2n

≤ n

n+ 1
s2n+1 −

n+ 1

n+ 2
s2n

=
n+ 1

n+ 2

(
s2n+1 − s2n

)
=
n+ 1

n+ 2
(sn+1 + sn)(sn+1 − sn).

(4)

Since s2 − s1 ≤ 0, inductively we prove that sn+1 ≤ sn for all n. Therefore
{sn}n≥1 is decreasing.

(c). In (b), we have proved that α = limn→∞ sn exists. Taking limits on
both sides of sn+1 = n

n+1s
2
n, we see that

α = α2,

which implies that

α = 0, α = 1.

Since s2 = 1
2 and {sn}n≥1 is a decreasing sequence, we see

α = 0.

�

18. P66. # 10.12

Proof. (a). tn ≥ 0 for all n, and tn+1 ≤ tn for all n ∈ N. This proves
that {tn} is a bounded and decreasing sequence. Therefore by the monotone
convergence theorem, limn→∞ tn exists.

(b). From (c), limn→∞ tn = 1
2 .

(c). From tn+1 = n(n+2)
(n+1)2

= n+2
n+1 ×

n+1
n , by math induction, we prove that

tn = n+1
2n .

Alternatively,

tn =
n+ 1

n
× n− 1

n
× n

n− 1
× n− 2

n− 1
× · · · × t2

=
n+ 1

n
× n− 1

n
× n

n− 1
× n− 2

n− 1
× · · · × 3

2
× 1

2

=
n+ 1

2n
.

(5)

8



(d). From (c), limn→∞ tn = 1
2 .

�
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