HOMEWORK 2

SHUANGLIN SHAO

ABSTRACT. Please send me an email if you find mistakes. Thanks.

1. P38. #7.3

Proof. The sequences in (b), (d), (f), (j),(p),(r), (t) converge; their limits
are 1,1,1, %, 2,1 and 0, respectively.

The limit in (h) diverges because it is not bounded.

The limit in (1) diverges because it is a sequence consisting of 0, 1, —1; the

limit in (n) diverges because it is a sequence consisting of 0, @ and —?.
You can refer to Example 4 in Section 8 for a discussion. ([

P38. # 7.4

Proof. (a). x, = %ﬁ; Then

lim z, = 0.
n—oo

(b). 7o =31 72- Then

lim =
nos "6
O
2. P44. # 8.2

Proof. (b). lim,_00 by, = % For any € > 0, we need to find N € N such
that for any n > N,

™m—-19 7
(1)

‘<6.

3n+7 3
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In order for (3) to hold,

s 7
9e 3
So we take N € Nand N > % - % To conclude, for any € > 0, there exists
N € N such that for n > N,
™m—19 7 <
——|<e
3n+7 3
Similarly in (d),
. 2
g =5
O
3. P44. # 8.4

Proof. lim,, o s, = 0: for any € > 0, there exists N € N such that for
n>N,
€

[5n O’—M+1

Then
€

M+1
This proves that lim,,_, spt, = 0. O

[sntn — O] < [tnllsn] < M

< €.

4. P44. # 8.5(a)(B).

Proof. (a). This is proven in class. Please refer to the class notes.

(b). lim, o t, = 0: for any € > 0, there exists N € N such that for any
n> N,
ltn, — 0| =t, < e
Since [sy| < ty,
lsn, — 0] < e.
Therefore

lim s, = 0.
n—o0

5. P44. # 8.6

Proof. (a) (b).This is proven in class. Please refer to the class notes. [
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6. P45. # 8.8

Proof. (a).

1
0<vVniP+l-n=—=-——<

1
n2+1+n_n
Since lim,, % =0,

lim vn2+1—-n=0.

n—oo
(b).For any € > 0, we need to find N € N such that for any n > N,

@) |(\/n2+n—n)—%|<e.

We know that

1 n 1 n 1
e N e Ea i R e e E TS
In order for (2) to hold, it suffices that
L <ele,n>—.
2n 7 2¢
We can take N € Nand N > i
The proof in (c) is similar. O

7. P54. # 9.4

Proof. (a).s1 = 1,50 =v2,83 = VV2+ 1,54 =\/VV2+1.

(b). Let A = lim; o sy. Then taking limits on both sides of s,41 =

Vsn + 1.

A=vVA+1.
Therefore
A2—A—-1=0.
So A= LQ‘/B Since A > 0, we see that
1
A= +2‘/5.



8. P54. # 9.5

Proof. Let A = limy, oo t,. Obviously by math induction ¢, > 0; then
2
tni1 > 2‘2[% > /2. Taking limits on both sides of t, ;1 = %, we see that
A% 42
2A

A:

This proves that

A=V

9. P55. #9.9

Proof. (a). 1If limy, o 85, = 00, for any M > 0, there exists N1 € N such
that for any n > Ny,

Sp > M.
Taking n > max{ Ny, N1} and then we see that
tn, > M.

This proves that lim,, , t, = oco.
The claim in (b) is proven similarly.

(c). For the claim in (c), we prove it by contradiction. Suppose that
limy, 00 $p > limy oo . If limy, 00 8, = 400, then by (a), we see that
limy, o0 t, = 00, A contradiction. if lim, s t, = —00, then lim, oo S, =
—00, A contradiction. So we may assume that —oo < limy, o0t < limy 00 Sn <
oo. Let

A= lim t,,B = lim s,.

n—oo n—oo
Let e = BT_A. For this € > 0, there exists N7 € N such that for n > Ny,
B+ 3A
A—e<t,<A+4+e= —Z .
Also for this € > 0, there exists Ny € N such that for n > Ny,
A+3B
—Z =B—-e<s, <B+e
Since A < B,
3A+ B - B+3A
4 4
Therefore for n > max{Ny, N2}, t,, < sy, A contradiciton. [l
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10. P55. # 9.11

Proof. (a). Let
B = inf{t, : n € N}.
As an infimum of real numbers,
B < .

So

—00 < B < o0.
Since limy, o 8, = 00, for any M > 0, there exists N € N such that for
n >N,

sp > M — B.
Since B = inf{t,, : n € N}, t,, > B. Therefore

Sp+tn, > M,

which implies that lim,, (s, + t,) = o0.

(b). The case where lim, o t, < 00 is proven similarly as in (a). We
discuss the case where lim, ., t, = oo. For M > 0, there exists N € N
such that for n > N,
M M
Sy > ?, tn > ?
So we have

M M

Therefore we have
lim (s, +t,) = +o0.

n—oo
The claim in (c) is proven similarly. O
11. P56. # 9.15

Proof. If a = 0, then ‘;—T,L = 0. So limy, e 7y = 0.

If a € R and a # 0, we prove that

) n . |al™
lim |[—| = lim — =0
n—oo | n! n—oo n!
We write
la" _ la| x - xal lal _ lal |al
— = =a| x X
n! 1x2x%x---Xn 2 3 n



Then

ﬂ < |a|n—1M.
n! n
Therefore
- al”
lim — =0.
n—oo nl
O
12. P56. # 9.18
Proof. The proof is skipped. U

13. P64. # 10.1

Proof. In (a), % is a decreasing and bounded sequence.

In (b), (_nlg)n is a bounded sequence.
In (c), n® is an increasing sequence.
In (d), sin %% is a bounded sequence.

In (e), (—2)™ is neither increasing nor decreasing; it is not bounded either.

In (f), 3% is a decreasing and bounded sequence. O

14. P65. # 10.3

Proof. We recall that s, = K+ ‘11—(1] 4+ f%; for all n. Since each d; belongs
to the set {0,1,2,---,9}, we see that 0 < d; < 9. So

9 9 9 1
n<K+—+-—S+ - +—=K+1-—<K+1
B T R TR T T T

15. P65. # 10.6

Proof. (a). Since > o2 ;27" =1, for any € > 0, there exists N € N such

that for n > N,
1
227<6.

n>N
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Form >n > N,

’3m - Sn‘ = ’3m —Sm-1+S8m—1—Sm—2+ "+ Sntr1 — Sn

< ‘Sm - 3m—1| + -+ ’8n+1 - Sn’

Therefore we prove that {s,} is a Cauchy sequence. Hence it is convergent.
(b). We assume that s, = > p_; 7. Then {s,} satisfies the condition

1 1
< —.
n+1 n

|3n+1 - 5n| =

However _3° | 7 is a harmonic series.

16. P65. # 10.7

Proof. By the completeness Axiom, o = sup S exists. For any % > 0, there

1

exists a — o~ is not an upper bound, i.e., there exists s, € S such that

1 1
a——<sp<a<la+ —.
n n

By the squeezing theorem,

lim s, = a =supS.
n—oo

17. P65. # 10.9

_ 1
,84—@.

=

PT’OOf. (a) §1 = 1,52 = %,83 =

(b). Firstly s, > 0. Then we prove that {sy},>1 is a decreasing sequence.
Then by the monotone convergence theorem, we see that lim,, o, s, exists.
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Indeed,

n+1 4 no
Sn42 = Snt+1 = mSnJrl - msn
n o o n+1 4
R R A
(4) n+1
_ 2 2
T nt2 (5n+1 - Sn)
n+1
= "t 2(3n+1 + Sn)(sn—‘rl - Sn)'

Since s2 — s1 < 0, inductively we prove that s,41 < s, for all n. Therefore
{sn}n>1 is decreasing.

(c). In (b), we have proved that o = lim,_,~ s, exists. Taking limits on
both sides of 5,41 = niﬂs%, we see that
o =a?,
which implies that
a=0,a=1.
Since sy = % and {sp}n>1 is a decreasing sequence, we see

a=0.

18. P66. # 10.12

Proof. (a). t, > 0 for all n, and t,41 < ¢, for all n € N. This proves
that {¢,} is a bounded and decreasing sequence. Therefore by the monotone
convergence theorem, lim, . t, exists.

(b). From (c), limy o0 tn = 3.

(c). From t, 1 = Z&T{)@ = Z—ﬁ X ”T'H, by math induction, we prove that
_ ntl
th = 5.
Alternatively,
n+1 n-—1 n n—2
th = X X X X s X o
n n n—1 n-1
n+1 n-1 n n—2 3 1
(5) = X X X X o X — X =
n n n—1 n-1 2 2
n+1
- 2n



(d). From (c), limy o0 tn = 3.
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