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Abstract. Please send me an email if you find mistakes. Thanks.

1. P130 . # 17.1

Proof. (a). The domain of the new functions should be the intersection of
the old domains of the two functions, f + g and fg; so it is (−∞, 4]. For the
composite functions, the domain of the inner function should give outputs
in the domain of the outside function. So for f ◦g, the domain is [−2, 2] and
for g ◦ f , the domain is (−∞, 4].

(b).

f ◦ g(0) = 2,

g ◦ f(0)4,

f ◦ g(1) =
√

3,

g ◦ f(0)3,

f ◦ g(2) = 0,

g ◦ f(0)2.

(c). From (b), they are not equal.

(d). f ◦ g(3) does not make sense; however, g ◦ f(3) = 1 make sense. �

2. P131. # 17.4

Proof. If a > 0, we prove that
√
x is continuous at x = a. For any ε > 0, we

need to find δ > 0 such that |x− a| < δ and x > 0,

|
√
x−
√
a| < ε.

We know that

|
√
x−
√
a| = |x− a|√

x+
√
a
≤ |x− a|√

a
.
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We take δ =
√
aε.

For a = 0, for any ε > 0, we take δ = ε2, then for |x| < δ,

|
√
x−
√

0| =
√
x ≤
√
δ = ε.

This proves that
√
x is continuous at x = 0. So

√
x is continuous at all

x ≥ 0. �

3. P132. # 17.9(a)

Proof. For any ε > 0, we need to find δ > 0 such that for |x− 2| < δ,

|x2 − 22| < ε.

We see that

|x2 − 22| = |x+ 2||x− 2|.

So firstly we take δ < 1, so 1 < x < 3. so 3 < |x+ 2| = x+ 2 < 5. Then we
take δ < ε

5 , then we have

|x2 − 22| < 5|x− 2| < ε.

So finally we take 0 < δ < min{1, ε5}.

�

4. P132. # 17.10 (b)

Proof. (b). We take xn = 1
2nπ , then xn → 0 as n→∞. However

sin
1

xn
= 0.

We take another sequence, yn = 1
2nπ+π

2
, then we know that yn → 0.

sin
1

yn
= 1.

Thus we find two sequences both converging to zero. But their limits are 0
and 1, respectively. This proves that g(x) is not continuous at zero. �
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5. P132. # 17.11

Proof. From Theorem 17.2, if f is continuous at x0, then for any monotonic
sequence xn in dom(f) converging to x0, f(xn) = f(x0).

Conversely, for any sequence yn converging to x0, we need to prove that

f(yn)→ f(x0), as n→∞.

We prove it by contradiction. Suppose that it fails. Then there exists a
subsequence yn such that the convergence fails. There exists ε0 > 0, for any
1
n , there exists ynk such that

(1) |f(ynk)− f(x0)| ≥ ε0.

However for ynk , there exists a subsequence ynkj such that ynkj is monotone.

Therefore by the hypothesis,

lim
j→∞

f(ynkj ) = f(x0).

This is a contradiction to (1). �

6. P132. # 17.13 (a)

Proof. We note that both rationals and irrationals are dense in the real
numbers. For any real number a, there exists rational sequence xn → a and
irrational sequence yn → a. However

f(xn) = 1, f(yn) = 0.

This proves that f is not continuous at a. �

7. P138. # 18.1

Proof. This is obvious. �

8. P138. # 18.2

Proof. A subsequence may converges to an endpoint of (a, b). For instance,
f(x) = 1

x on (0, 1). We take the subsequence xn = 1
n . �
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9. P139. # 18.4

Proof. We construct the function as follows: f(x) = 1
x−x0 . Since there exists

a sequence xn in S converging to x0, then there either exists a subsequence
of {xn} converging to x0 either from the left hand side or from the right
hand side. If it is from the left hand, then f is not bounded above. If it is
from the right hand, then f is not bounded below. �

10. P139. # 18.5

Proof. (a). We consider the function h(x) = f(x)− g(x). Then

h(a) = f(a)− g(a) ≥ 0, h(b) = f(b)− g(b) ≤ 0,

so for 0, by the intermediate value theorem, we see that there exists x0 ∈
[a, b] such that

h(x0) = 0, i.e. f(x0) = g(x0).

(b). Let g(x) = x.

�

11. P139. # 18.8

Proof. Since f(a)f(b) < 0, then f(a) and f(b) have different signs. So for
0, by the intermediate value theorem, there exists x0 between a and b such
that

f(x0) = 0.

�

12. P139. # 18.12

Proof. (a). This is done in Exercise # 17.10 (b).

(b). We observe that f is continuous on the real line except for 0. It
has the intermediate value property on either the positive real axis or the
negative real axis. Suppose y is between f(a) and f(b). I

Case 1. If a, b have the same signs, we apply the intermediate value
theorem on one side.
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Case 2. If a, b have different signs. Suppose that a < 0 < b and 0 < −a ≤
b. We first assume that [a, b] ⊂ [− 1

2π ,
1
2π ]. There exists n ∈ N such that

− 1

2nπ
≤ a ≤ − 1

2(n+ 1)π
.

Then we consider 1
a0

= − 1
a + π, which is obtained by reflecting a about the

origin and translating it π. Then

a0 =
1

− 1
a + π

<
1

− 1
a

= −a,

and

sin
1

a0
= sin

1

a
,

and a0 and b are on the same side to the origin. Then we can apply the
intermediate value theorem on one side.

Secondly if a < − 1
2π or b > 1

2π , there exists a1, b1 ∈ [− 1
2π ,

1
2π ] such that

sin
1

a1
= sin

1

a
, sin

1

b1
= sin

1

b
.

Indeed, for a < − 1
2π , we see that

−4π <
1

a
− 2π < 2π.

Setting a1 = 1
1
a
−2π . Then

− 1

2π
< a1 < 0.

Then it reduce to the situation considered above. �
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