HOMEWORK 4

SHUANGLIN SHAO

ABSTRACT. Please send me an email if you find mistakes. Thanks.

1. P130 . # 17.1

Proof. (a). The domain of the new functions should be the intersection of the old domains of the two functions, f + g and fg; so it is $(-\infty, 4]$. For the composite functions, the domain of the inner function should give outputs in the domain of the outside function. So for $f \circ g$, the domain is [-2, 2] and for $g \circ f$, the domain is $(-\infty, 4]$.

(b).

$$f \circ g(0) = 2, g \circ f(0)4, f \circ g(1) = \sqrt{3}, g \circ f(0)3, f \circ g(2) = 0, g \circ f(0)2.$$

(c). From (b), they are not equal.

(d). $f \circ g(3)$ does not make sense; however, $g \circ f(3) = 1$ make sense. \Box

Proof. If a > 0, we prove that \sqrt{x} is continuous at x = a. For any $\epsilon > 0$, we need to find $\delta > 0$ such that $|x - a| < \delta$ and x > 0,

$$|\sqrt{x} - \sqrt{a}| < \epsilon.$$

We know that

$$|\sqrt{x} - \sqrt{a}| = \frac{|x-a|}{\sqrt{x} + \sqrt{a}} \le \frac{|x-a|}{\sqrt{a}}.$$

We take $\delta = \sqrt{a\epsilon}$.

For a = 0, for any $\epsilon > 0$, we take $\delta = \epsilon^2$, then for $|x| < \delta$,

$$|\sqrt{x} - \sqrt{0}| = \sqrt{x} \le \sqrt{\delta} = \epsilon.$$

This proves that \sqrt{x} is continuous at x = 0. So \sqrt{x} is continuous at all $x \ge 0$.

Proof. For any $\epsilon > 0$, we need to find $\delta > 0$ such that for $|x - 2| < \delta$,

$$|x^2 - 2^2| < \epsilon.$$

We see that

$$|x^{2} - 2^{2}| = |x + 2||x - 2|.$$

So firstly we take $\delta < 1$, so 1 < x < 3. so 3 < |x + 2| = x + 2 < 5. Then we take $\delta < \frac{\epsilon}{5}$, then we have

$$|x^2 - 2^2| < 5|x - 2| < \epsilon.$$

So finally we take $0 < \delta < \min\{1, \frac{\epsilon}{5}\}$.

Proof. (b). We take $x_n = \frac{1}{2n\pi}$, then $x_n \to 0$ as $n \to \infty$. However

$$\sin\frac{1}{x_n} = 0.$$

We take another sequence, $y_n = \frac{1}{2n\pi + \frac{\pi}{2}}$, then we know that $y_n \to 0$.

$$\sin\frac{1}{y_n} = 1.$$

Thus we find two sequences both converging to zero. But their limits are 0 and 1, respectively. This proves that g(x) is not continuous at zero.

Proof. From Theorem 17.2, if f is continuous at x_0 , then for any monotonic sequence x_n in dom(f) converging to x_0 , $f(x_n) = f(x_0)$.

Conversely, for any sequence y_n converging to x_0 , we need to prove that

$$f(y_n) \to f(x_0)$$
, as $n \to \infty$.

We prove it by contradiction. Suppose that it fails. Then there exists a subsequence y_n such that the convergence fails. There exists $\epsilon_0 > 0$, for any $\frac{1}{n}$, there exists y_{n_k} such that

(1)
$$|f(y_{n_k}) - f(x_0)| \ge \epsilon_0.$$

However for y_{n_k} , there exists a subsequence $y_{n_{k_j}}$ such that $y_{n_{k_j}}$ is monotone. Therefore by the hypothesis,

$$\lim_{j \to \infty} f(y_{n_{k_j}}) = f(x_0).$$

This is a contradiction to (1).

Proof. We note that both rationals and irrationals are dense in the real numbers. For any real number a, there exists rational sequence $x_n \to a$ and irrational sequence $y_n \to a$. However

$$f(x_n) = 1, f(y_n) = 0.$$

This proves that f is not continuous at a.

Proof. This is obvious.

8. P138. # 18.2

Proof. A subsequence may converges to an endpoint of (a, b). For instance, $f(x) = \frac{1}{x}$ on (0, 1). We take the subsequence $x_n = \frac{1}{n}$.

9. P139. # 18.4

Proof. We construct the function as follows: $f(x) = \frac{1}{x-x_0}$. Since there exists a sequence x_n in S converging to x_0 , then there either exists a subsequence of $\{x_n\}$ converging to x_0 either from the left hand side or from the right hand side. If it is from the left hand, then f is not bounded above. If it is from the right hand, then f is not bounded below.

Proof. (a). We consider the function h(x) = f(x) - g(x). Then

$$h(a) = f(a) - g(a) \ge 0, h(b) = f(b) - g(b) \le 0,$$

so for 0, by the intermediate value theorem, we see that there exists $x_0 \in [a, b]$ such that

$$h(x_0) = 0$$
, i.e. $f(x_0) = g(x_0)$.

(b). Let g(x) = x.

11. P139. # 18.8

Proof. Since f(a)f(b) < 0, then f(a) and f(b) have different signs. So for 0, by the intermediate value theorem, there exists x_0 between a and b such that

$$f(x_0) = 0.$$

12. P139. # 18.12

Proof. (a). This is done in Exercise # 17.10 (b).

(b). We observe that f is continuous on the real line except for 0. It has the intermediate value property on either the positive real axis or the negative real axis. Suppose y is between f(a) and f(b). I

Case 1. If a, b have the same signs, we apply the intermediate value theorem on one side.

Case 2. If a, b have different signs. Suppose that a < 0 < b and $0 < -a \le b$. We first assume that $[a, b] \subset [-\frac{1}{2\pi}, \frac{1}{2\pi}]$. There exists $n \in \mathbb{N}$ such that

$$-\frac{1}{2n\pi} \le a \le -\frac{1}{2(n+1)\pi}$$

Then we consider $\frac{1}{a_0} = -\frac{1}{a} + \pi$, which is obtained by reflecting *a* about the origin and translating it π . Then

$$a_0 = \frac{1}{-\frac{1}{a} + \pi} < \frac{1}{-\frac{1}{a}} = -a,$$

and

$$\sin\frac{1}{a_0} = \sin\frac{1}{a},$$

and a_0 and b are on the same side to the origin. Then we can apply the intermediate value theorem on one side.

Secondly if
$$a < -\frac{1}{2\pi}$$
 or $b > \frac{1}{2\pi}$, there exists $a_1, b_1 \in [-\frac{1}{2\pi}, \frac{1}{2\pi}]$ such that $\sin \frac{1}{a_1} = \sin \frac{1}{a}, \sin \frac{1}{b_1} = \sin \frac{1}{b}$.

Indeed, for $a < -\frac{1}{2\pi}$, we see that

$$-4\pi < \frac{1}{a} - 2\pi < 2\pi.$$

Setting $a_1 = \frac{1}{\frac{1}{a} - 2\pi}$. Then

$$-\frac{1}{2\pi} < a_1 < 0.$$

Then it reduce to the situation considered above.

DEPARTMENT OF MATHEMATICS, KU, LAWRENCE, KS 66045

E-mail address: slshao@math.ku.edu