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Abstract. Please send me an email if you find mistakes. Thanks.

1. P151. # 19.1

Proof. (a). (b). The function is uniformly continuous on [0, π] by Theorem
19.2 because it is continuous on [0, π].

(c). This function is uniformly continuous on (0, 1) by Theorem 19.5 because
it can be extended to be a continuous function on [0, 1]. The extension still
takes the same form as x3.

(d). f is not uniformly continuous on R: We choose xn = n + 1
n and

yn = n, then

|xn − yn| =
1

n
→ 0 as n→∞.

However,

x3n − y3n = 3n(n+
1

n
)× 1

n
≥ n.

(e). f is not uniformly continuous on (0, 1]: We choose xn = 1
n and

yn = 1
2n , then

|xn − yn| =
1

2n
→ 0 as n→∞.

However,

|x3n − y3n| = |n3 − 8n3| = 7n3.

(f). f is not uniformly continuous on (0, 1] because f can not extend to a
continuous function on [0, 1]. For xn = 1√

2nπ
and yn = 1√

2nπ+π/2
,

f(xn)→ 0, but f(yn)→ 1.
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(g). f is a uniformly continuous function on (0, 1] because f can be
extended to be a continuous function on [0, 1]. Define g to be

g(x) =

{
x2 sin 1

x , for (0, 1],

0, for x = 0.

The function g is continuous on (0, 1]; however it is also continuous at x = 0
because

0 ≤ |x2 sin
1

x
| ≤ x2.

So g is a continuous function on [0, 1]. �

2. P151. # 19.2

Proof. (a). For ε > 0, there exists δ = ε
3 such that for |x− y| < δ,

|f(x)− f(y)| = 3|x− y| < 3δ = ε.

This proves that f is a uniformly continuous function on R.

(b). For f(x) = x2 on [0, 3]: for any ε > 0, there exists δ = ε
6 , such that

for |x− y| < δ,

|x2 − y2| = (x+ y)|x− y| < 6|x− y|

because 0 ≤ x, y ≤ 3. Then

|x2 − y2| < 6|x− y| = ε.

So f is a uniformly continuous function on [0, 3]. �

3. P151. # 19.3

Proof. (a). For any ε > 0, there exists δ = ε, such that for any |x− y| < δ,

|f(x)− f(y)| = | x

x+ 1
− y

y + 1
| = |x− y|

(x+ 1)(y + 1)
≤ |x− y|

because 0 ≤ x, y ≤ 2. so

|f(x)− f(y)| ≤ ε.

This proves that f is a uniformly continuous function on [0, 2]. �
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4. P151. # 19.4

Proof. (a). We prove it by contradiction. Suppose that f is not bounded.
Then f may not be bounded above or f may not be bounded below. Suppose
that f is not bounded above. For any n ∈ N, there exists xn ∈ S,

f(xn) > n.

Since {xn} is bounded, by the Bolzano-Weierstrass theorem, there exists a
subsequence {xnk

} of xn such that xnk
converges. Then {xnk

} is a Cauchy.
Therefore f(xnk

) is Cauchy, too, because f is a uniformly continuous func-
tion. Therefore limk→∞ f(xnk

) exists. So {f(xnk
)} is bounded. However by

assumption,

f(xnk
) ≥ nk, and nk →∞, as k →∞.

which proves that f(xnk
) is not bounded. A contradiction.

(b). If it is uniformly continuous, then f is bounded on (0, 1). However,
for xn = 1

n ,

f(xn) =
1

x2n
= n2 →∞.

It is not bounded. Therefore it is not uniformly continuous.

�

5. P152. # 19.6

Proof. (a). We compute f ′(x) = 1
2
√
x
. Then f ′(x) is not bounded on (0, 1].

However f is uniformly continuous on (0, 1]. We observe that for x, y ∈ (0, 1],

|
√
x−√y| ≤

√
|x− y|.

This can be proven, if x ≥ y,
√
x ≤
√
x− y +

√
y.

and if x ≤ y,
√
y ≤
√
y − x+

√
x.

Then the inequality holds. For any ε > 0, we take δ = ε2, then for |x−y| ≤ δ,

|
√
x−√y| ≤

√
|x− y| ≤ ε.

This proves that
√
x is uniformly continuous on (0, 1].

(b). The proof in part (a) applies in this case, too. �
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6. P152. # 19.7

Proof. (a). If k = 0, then the claim is proven. Suppose that k > 0. We
know that f is uniformly continuous on [k,∞): for any ε > 0, there exists
δ1 > 0 such that for |x− y| < δ1,

|f(x)− f(y)| < ε.

Also f is continuous on [0, 2k] and so is uniformly continuous on [0, 2k]: for
the same ε > 0, there exists δ2 > 0 such that for |x− y| < δ2,

|f(x)− f(y)| < ε.

Then we claim that f is uniformly continuous on [0,∞). For the same ε > 0,
we take δ < min{k, δ1, δ2}, then if |x− y| < δ,

|f(x)− f(y)| < ε.

This is because |x− y| < δ implies two cases, if x ∈ [0, k], then since δ ≤ k,
x, y ∈ [0, 2k]. We can apply uniform continuity of f on [0, 2k]. If x ∈ [2k,∞),
then since δ ≤ k, x, y ∈ [k,∞). Then we can apply the uniform continuity
of f on [k,∞). If x ∈ (k, 2k), then we since |x− y| < k, then either x, y are
in [0, 2k] or in [k,∞). Therefore f is uniformly continuous on [k,∞).

(b). By Ex. 19.6 and part (a), f =
√
x is uniformly continuous on

[0,∞). �

7. P152. #19.9

Proof. (a). f is continuous when x 6= 0. When x = 0,

|x sin
1

x
| ≤ |x|.

So it is also continuous at x = 0. So it is continuous on R.

(b). Yes. f is uniformly continuous on any bounded subset of R. Indeed,
any bounded subset is contained in a closed and bounded interval, [−M,M ],
for some M > 0. Since f is uniformly continuous on [−M,M ], f is uniformly
continuous on the bounded subset.

(c). Yes. Firstly we prove that

| sinx− sin y| ≤ |x− y|.

This is easily proven by using the mean value theorem, since sin′ x = cosx
and | cosx| ≤ 1.
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Secondly, we prove that f is uniformly continuous on the interval |x| ≥ 10.
We write

|x sin
1

x
−y sin

1

y
| = |(x−y) sin

1

x
−y(sin

1

x
−sin

1

y
)| ≤ |x−y|+|y| |x− y|

|x||y|
≤ 11

10
|x−y|.

For any ε > 0, there exists δ < 1
2ε such that for any |x− y| < δ,

|f(x)− f(y)| ≤ 11

10
|x− y| < ε.

Therefore f is uniformly continuous on |x| ≥ 10. By part (b), f is uniformly
continuous on [−10, 10]. Hence by Ex.19.7, f is uniformly continuous on
R. �

8. P162. # 20.1

Proof.

lim
x→∞

f(x) = 1; lim
x→0+

f(x) = 1; lim
x→0−

f(x) = −1; lim
x→−∞

f(x) = 1.

However limx→0 f(x) does not exist because the left-hand limit and the right
hand limit are not equal. �

9. P162. # 20.2

Proof.

lim
x→∞

f(x) =∞; lim
x→0+

f(x) = 0; lim
x→0−

f(x) = 0; lim
x→−∞

f(x) = −∞.

However limx→0 f(x) = 0 because the left-hand limit and the right hand
limit exist and are equal. �

10. P162. # 20.5

Proof. We can rewrite f ,

f(x) =

{
1, for x > 0,

−1, for x < 0.

Therefore the limits in Ex. 20.1 hold. �
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11. P162. #20.6

Proof. Since f(x) = x3

|x| , we see that

|f(x)| ≤ x2.

So

lim
x→0+

f(x) = 0; lim
x→0−

f(x) = 0.

However, f also satisfies

|f(x)| = x2.

This proves that

lim
x→∞

f(x) =∞; lim
x→−∞

f(x) = −∞.

�

12. P162. # 20.11

Proof. (a).

lim
x→a

x2 − a2

x− a
= lim

x→a

(x+ a)(x− a)

x− a
= lim

x→a
(x+ a) = 2a.

(b). Since x− b = (
√
x+
√
b)(
√
x−
√
b),

lim
x→b

√
x−
√
b

x− b
= lim

x→b

1
√
x+
√
b

=
1

2
√
b
.

Similarly in (c), limx→a
x3−a3
x−a = 3a2. �

13. P163. # 20.12

Proof. (a).

lim
x→2+

f(x) =∞; lim
x→2−

f(x) =∞; lim
x→1+

f(x) =∞; lim
x→1−

f(x) = −∞.

(b). They do not exist. Even though at 2,

lim
x→2+

f(x) =∞ = lim
x→2−

f(x),

the limit does not exist at 2 since the limit value is ∞. �
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14. P163. # 20.16

Proof. (a). We prove it by contradiction. Suppose that L1 > L2. Take

ε = L1−L2
2 . For this ε, limx→a+ f1(x) = L1 implies that there exists δ1 <

b−a
2 ,

such that for a < x < a+ δ1 < b,

|f1(x)− L1| < ε.

This implies

f1(x) > L1 − ε =
L1 + L2

2
, for a < x < a+ δ1.

The limit limx→a+ f2(x) = L2 implies that there exists δ2 <
b−a
2 such that

for a < x < a+ δ2 < b,

|f2(x)− L2| < ε.

This implies,

f2(x) < L2 + ε =
L1 + L2

2
, for a < x < a+ δ2.

Therefore for a < x < a+ min{δ1, δ2},

f2(x) <
L1 + L2

2
< f1(x).

A contradiction. This proves that L1 ≤ L2.

(b).No. An example, f1(x) = sinx and f2(x) = x for x ∈ (0, π/2). Then we
know that sinx < x. But

lim
x→0+

sinx = 0; lim
x→0+

x = 0.

�

15. P163. # 20.17

Proof. Given ε > 0. The limit limx→a+ f1(x) = L implies that there exists
0 < δ1 < a+ b−a

2 , such that for a < x < a+ δ1 < b,

|f1(x)− L1| < ε.

This implies

L− ε < f1(x) < L+ ε, , for a < x < a+ δ1.

The limit limx→a+ f3(x) = L implies that there exists 0 < δ1 < a+ b−a
2 that

for a < x < a+ δ2 < b,

|f3(x)− L| < ε.

This implies,

L− ε < f3(x) < L+ ε, for a < x < a+ δ2.
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Therefore for a < x < a+ min{δ1, δ2},

L− ε < f1(x) ≤ f2(x) ≤ f3(x) < L+ ε,

i.e., |f2(x)− L| < ε. This proves that

lim
x→a+

f2(x) = L.

�

16. P163. # 20.20

Proof. (a). We first discuss the case where −∞ < L2 < ∞. The limit
limx→aS f1(x) =∞ implies, for any M > 0, there exists δ1 > 0 such that for
0 < |x− a| < δ1 and x ∈ S,

f1(x) > M − (L2 − 1).

Since limx→aS f2(x) = L2, for ε = 1, there exists δ2 > 0 such that for
0 < |x− a| < δ2 and x ∈ S,

|f2(x)− L2| < ε,

i.e.,

L2 − 1 < f2(x) < L2 + 1.

Then for 0 < |x− a| < min{δ1, δ2} and x ∈ S,

f1(x) + f2(x) > M − (L2 − 1) + (L2 − 1) = M.

This proves that limx→aS f1(x) + f2(x) = ∞. The case where L2 = ∞ is
similar.

(b). We first discuss the case where −∞ < L2 <∞.

Since limx→aS f2(x) = L2, for ε = L2
2 , there exists δ2 > 0 such that for

0 < |x− a| < δ2 and x ∈ S,

|f2(x)− L2| < ε,

i.e.,
L2

2
< f2(x) <

3L2

2
.

The limit limx→aS f1(x) = ∞ implies, for any M > 0, there exists δ1 > 0
such that for 0 < |x− a| < δ1 and x ∈ S,

f1(x) >
M

L2/2
.
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Then for 0 < |x− a| < min{δ1, δ2} and x ∈ S,

f1(x)f2(x) >
M

L2/2
× L2

2
= M.

This proves that limx→aS f1(x)f2(x) =∞. The case where L2 =∞ is similar.

(c). This is similar to part (b).

(d).It can be any positive real number. Let a > 0 ∈ R.

lim
x→1+

a

x− 1
=∞; lim

x→1+
x− 1 = 0.

But
lim
x→1+

a

x− 1
× (x− 1) = a.

�
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