HOMEWORK 5

SHUANGLIN SHAO

Abstract. Please send me an email if you find mistakes. Thanks.

1. P151. \# 19.1

Proof. (a). (b). The function is uniformly continuous on $[0, \pi]$ by Theorem 19.2 because it is continuous on $[0, \pi]$.
(c). This function is uniformly continuous on $(0,1)$ by Theorem 19.5 because it can be extended to be a continuous function on $[0,1]$. The extension still takes the same form as x^{3}.
(d). $\quad f$ is not uniformly continuous on \mathbb{R} : We choose $x_{n}=n+\frac{1}{n}$ and $y_{n}=n$, then

$$
\left|x_{n}-y_{n}\right|=\frac{1}{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

However,

$$
x_{n}^{3}-y_{n}^{3}=3 n\left(n+\frac{1}{n}\right) \times \frac{1}{n} \geq n
$$

(e). $\quad f$ is not uniformly continuous on $(0,1]$: We choose $x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{2 n}$, then

$$
\left|x_{n}-y_{n}\right|=\frac{1}{2 n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

However,

$$
\left|x_{n}^{3}-y_{n}^{3}\right|=\left|n^{3}-8 n^{3}\right|=7 n^{3}
$$

(f). f is not uniformly continuous on $(0,1]$ because f can not extend to a continuous function on $[0,1]$. For $x_{n}=\frac{1}{\sqrt{2 n \pi}}$ and $y_{n}=\frac{1}{\sqrt{2 n \pi+\pi / 2}}$,

$$
f\left(x_{n}\right) \rightarrow 0, \text { but } f\left(y_{n}\right) \rightarrow 1
$$

(g). $\quad f$ is a uniformly continuous function on $(0,1]$ because f can be extended to be a continuous function on $[0,1]$. Define g to be

$$
g(x)= \begin{cases}x^{2} \sin \frac{1}{x}, & \text { for }(0,1] \\ 0, & \text { for } x=0\end{cases}
$$

The function g is continuous on $(0,1]$; however it is also continuous at $x=0$ because

$$
0 \leq\left|x^{2} \sin \frac{1}{x}\right| \leq x^{2}
$$

So g is a continuous function on $[0,1]$.

2. P151. \# 19.2

Proof. (a). For $\epsilon>0$, there exists $\delta=\frac{\epsilon}{3}$ such that for $|x-y|<\delta$,

$$
|f(x)-f(y)|=3|x-y|<3 \delta=\epsilon .
$$

This proves that f is a uniformly continuous function on \mathbb{R}.
(b). For $f(x)=x^{2}$ on $[0,3]$: for any $\epsilon>0$, there exists $\delta=\frac{\epsilon}{6}$, such that for $|x-y|<\delta$,

$$
\left|x^{2}-y^{2}\right|=(x+y)|x-y|<6|x-y|
$$

because $0 \leq x, y \leq 3$. Then

$$
\left|x^{2}-y^{2}\right|<6|x-y|=\epsilon .
$$

So f is a uniformly continuous function on $[0,3]$.

3. P151. \# 19.3

Proof. (a). For any $\epsilon>0$, there exists $\delta=\epsilon$, such that for any $|x-y|<\delta$,

$$
|f(x)-f(y)|=\left|\frac{x}{x+1}-\frac{y}{y+1}\right|=\frac{|x-y|}{(x+1)(y+1)} \leq|x-y|
$$

because $0 \leq x, y \leq 2$. so

$$
|f(x)-f(y)| \leq \epsilon
$$

This proves that f is a uniformly continuous function on $[0,2]$.

Proof. (a). We prove it by contradiction. Suppose that f is not bounded. Then f may not be bounded above or f may not be bounded below. Suppose that f is not bounded above. For any $n \in \mathbb{N}$, there exists $x_{n} \in S$,

$$
f\left(x_{n}\right)>n .
$$

Since $\left\{x_{n}\right\}$ is bounded, by the Bolzano-Weierstrass theorem, there exists a subsequence $\left\{x_{n_{k}}\right\}$ of x_{n} such that $x_{n_{k}}$ converges. Then $\left\{x_{n_{k}}\right\}$ is a Cauchy. Therefore $f\left(x_{n_{k}}\right)$ is Cauchy, too, because f is a uniformly continuous function. Therefore $\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)$ exists. So $\left\{f\left(x_{n_{k}}\right)\right\}$ is bounded. However by assumption,

$$
f\left(x_{n_{k}}\right) \geq n_{k}, \text { and } n_{k} \rightarrow \infty, \text { as } k \rightarrow \infty .
$$

which proves that $f\left(x_{n_{k}}\right)$ is not bounded. A contradiction.
(b). If it is uniformly continuous, then f is bounded on $(0,1)$. However, for $x_{n}=\frac{1}{n}$,

$$
f\left(x_{n}\right)=\frac{1}{x_{n}^{2}}=n^{2} \rightarrow \infty .
$$

It is not bounded. Therefore it is not uniformly continuous.

$$
\text { 5. P152. \# } 19.6
$$

Proof. (a). We compute $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. Then $f^{\prime}(x)$ is not bounded on $(0,1]$. However f is uniformly continuous on $(0,1]$. We observe that for $x, y \in(0,1]$,

$$
|\sqrt{x}-\sqrt{y}| \leq \sqrt{|x-y|} .
$$

This can be proven, if $x \geq y$,

$$
\sqrt{x} \leq \sqrt{x-y}+\sqrt{y}
$$

and if $x \leq y$,

$$
\sqrt{y} \leq \sqrt{y-x}+\sqrt{x}
$$

Then the inequality holds. For any $\epsilon>0$, we take $\delta=\epsilon^{2}$, then for $|x-y| \leq \delta$,

$$
|\sqrt{x}-\sqrt{y}| \leq \sqrt{|x-y|} \leq \epsilon
$$

This proves that \sqrt{x} is uniformly continuous on $(0,1]$.
(b). The proof in part (a) applies in this case, too.

Proof. (a). If $k=0$, then the claim is proven. Suppose that $k>0$. We know that f is uniformly continuous on $[k, \infty)$: for any $\epsilon>0$, there exists $\delta_{1}>0$ such that for $|x-y|<\delta_{1}$,

$$
|f(x)-f(y)|<\epsilon
$$

Also f is continuous on $[0,2 k]$ and so is uniformly continuous on $[0,2 k]$: for the same $\epsilon>0$, there exists $\delta_{2}>0$ such that for $|x-y|<\delta_{2}$,

$$
|f(x)-f(y)|<\epsilon .
$$

Then we claim that f is uniformly continuous on $[0, \infty)$. For the same $\epsilon>0$, we take $\delta<\min \left\{k, \delta_{1}, \delta_{2}\right\}$, then if $|x-y|<\delta$,

$$
|f(x)-f(y)|<\epsilon
$$

This is because $|x-y|<\delta$ implies two cases, if $x \in[0, k]$, then since $\delta \leq k$, $x, y \in[0,2 k]$. We can apply uniform continuity of f on $[0,2 k]$. If $x \in[2 k, \infty)$, then since $\delta \leq k, x, y \in[k, \infty)$. Then we can apply the uniform continuity of f on $[k, \infty)$. If $x \in(k, 2 k)$, then we since $|x-y|<k$, then either x, y are in $[0,2 k]$ or in $[k, \infty)$. Therefore f is uniformly continuous on $[k, \infty)$.
(b). By Ex. 19.6 and part (a), $f=\sqrt{x}$ is uniformly continuous on $[0, \infty)$.
7. P152. \#19.9

Proof. (a). f is continuous when $x \neq 0$. When $x=0$,

$$
\left|x \sin \frac{1}{x}\right| \leq|x| .
$$

So it is also continuous at $x=0$. So it is continuous on \mathbb{R}.
(b). Yes. f is uniformly continuous on any bounded subset of \mathbb{R}. Indeed, any bounded subset is contained in a closed and bounded interval, $[-M, M]$, for some $M>0$. Since f is uniformly continuous on $[-M, M], f$ is uniformly continuous on the bounded subset.
(c). Yes. Firstly we prove that

$$
|\sin x-\sin y| \leq|x-y| .
$$

This is easily proven by using the mean value theorem, since $\sin ^{\prime} x=\cos x$ and $|\cos x| \leq 1$.

Secondly, we prove that f is uniformly continuous on the interval $|x| \geq 10$.
We write

$$
\left|x \sin \frac{1}{x}-y \sin \frac{1}{y}\right|=\left|(x-y) \sin \frac{1}{x}-y\left(\sin \frac{1}{x}-\sin \frac{1}{y}\right)\right| \leq|x-y|+|y| \frac{|x-y|}{|x||y|} \leq \frac{11}{10}|x-y| .
$$

For any $\epsilon>0$, there exists $\delta<\frac{1}{2} \epsilon$ such that for any $|x-y|<\delta$,

$$
|f(x)-f(y)| \leq \frac{11}{10}|x-y|<\epsilon
$$

Therefore f is uniformly continuous on $|x| \geq 10$. By part (b), f is uniformly continuous on $[-10,10]$. Hence by Ex.19.7, f is uniformly continuous on \mathbb{R}.

8. P162. \# 20.1

Proof.

$$
\lim _{x \rightarrow \infty} f(x)=1 ; \lim _{x \rightarrow 0+} f(x)=1 ; \lim _{x \rightarrow 0-} f(x)=-1 ; \lim _{x \rightarrow-\infty} f(x)=1
$$

However $\lim _{x \rightarrow 0} f(x)$ does not exist because the left-hand limit and the right hand limit are not equal.
9. P162. \# 20.2

Proof.

$$
\lim _{x \rightarrow \infty} f(x)=\infty ; \lim _{x \rightarrow 0+} f(x)=0 ; \lim _{x \rightarrow 0-} f(x)=0 ; \lim _{x \rightarrow-\infty} f(x)=-\infty .
$$

However $\lim _{x \rightarrow 0} f(x)=0$ because the left-hand limit and the right hand limit exist and are equal.
10. P162. \# 20.5

Proof. We can rewrite f,

$$
f(x)=\left\{\begin{array}{lr}
1, & \text { for } x>0 \\
-1, & \text { for } x<0
\end{array}\right.
$$

Therefore the limits in Ex. 20.1 hold.

> 11. P162. \#20.6

Proof. Since $f(x)=\frac{x^{3}}{|x|}$, we see that

$$
|f(x)| \leq x^{2}
$$

So

$$
\lim _{x \rightarrow 0+} f(x)=0 ; \lim _{x \rightarrow 0-} f(x)=0 .
$$

However, f also satisfies

$$
|f(x)|=x^{2} .
$$

This proves that

$$
\lim _{x \rightarrow \infty} f(x)=\infty ; \lim _{x \rightarrow-\infty} f(x)=-\infty .
$$

12. P162. \# 20.11

Proof. (a).

$$
\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x-a}=\lim _{x \rightarrow a} \frac{(x+a)(x-a)}{x-a}=\lim _{x \rightarrow a}(x+a)=2 a .
$$

(b). Since $x-b=(\sqrt{x}+\sqrt{b})(\sqrt{x}-\sqrt{b})$,

$$
\lim _{x \rightarrow b} \frac{\sqrt{x}-\sqrt{b}}{x-b}=\lim _{x \rightarrow b} \frac{1}{\sqrt{x}+\sqrt{b}}=\frac{1}{2 \sqrt{b}} .
$$

Similarly in (c), $\lim _{x \rightarrow a} \frac{x^{3}-a^{3}}{x-a}=3 a^{2}$.
13. P163. \# 20.12

Proof. (a).
$\lim _{x \rightarrow 2+} f(x)=\infty ; \lim _{x \rightarrow 2-} f(x)=\infty ; \lim _{x \rightarrow 1+} f(x)=\infty ; \lim _{x \rightarrow 1-} f(x)=-\infty$.
(b). They do not exist. Even though at 2,

$$
\lim _{x \rightarrow 2+} f(x)=\infty=\lim _{x \rightarrow 2-} f(x),
$$

the limit does not exist at 2 since the limit value is ∞.

Proof. (a). We prove it by contradiction. Suppose that $L_{1}>L_{2}$. Take $\epsilon=\frac{L_{1}-L_{2}}{2}$. For this $\epsilon, \lim _{x \rightarrow a+} f_{1}(x)=L_{1}$ implies that there exists $\delta_{1}<\frac{b-a}{2}$, such that for $a<x<a+\delta_{1}<b$,

$$
\left|f_{1}(x)-L_{1}\right|<\epsilon .
$$

This implies

$$
f_{1}(x)>L_{1}-\epsilon=\frac{L_{1}+L_{2}}{2}, \text { for } a<x<a+\delta_{1} .
$$

The limit $\lim _{x \rightarrow a+} f_{2}(x)=L_{2}$ implies that there exists $\delta_{2}<\frac{b-a}{2}$ such that for $a<x<a+\delta_{2}<b$,

$$
\left|f_{2}(x)-L_{2}\right|<\epsilon
$$

This implies,

$$
f_{2}(x)<L_{2}+\epsilon=\frac{L_{1}+L_{2}}{2}, \text { for } a<x<a+\delta_{2} .
$$

Therefore for $a<x<a+\min \left\{\delta_{1}, \delta_{2}\right\}$,

$$
f_{2}(x)<\frac{L_{1}+L_{2}}{2}<f_{1}(x) .
$$

A contradiction. This proves that $L_{1} \leq L_{2}$.
(b).No. An example, $f_{1}(x)=\sin x$ and $f_{2}(x)=x$ for $x \in(0, \pi / 2)$. Then we know that $\sin x<x$. But

$$
\lim _{x \rightarrow 0+} \sin x=0 ; \lim _{x \rightarrow 0+} x=0
$$

15. P163. \# 20.17

Proof. Given $\epsilon>0$. The limit $\lim _{x \rightarrow a+} f_{1}(x)=L$ implies that there exists $0<\delta_{1}<a+\frac{b-a}{2}$, such that for $a<x<a+\delta_{1}<b$,

$$
\left|f_{1}(x)-L_{1}\right|<\epsilon
$$

This implies

$$
L-\epsilon<f_{1}(x)<L+\epsilon, \text { for } a<x<a+\delta_{1} .
$$

The limit $\lim _{x \rightarrow a+} f_{3}(x)=L$ implies that there exists $0<\delta_{1}<a+\frac{b-a}{2}$ that for $a<x<a+\delta_{2}<b$,

$$
\left|f_{3}(x)-L\right|<\epsilon
$$

This implies,

$$
L-\epsilon<f_{3}(x)<L+\epsilon, \text { for } a<x<a+\delta_{2}
$$

Therefore for $a<x<a+\min \left\{\delta_{1}, \delta_{2}\right\}$,

$$
L-\epsilon<f_{1}(x) \leq f_{2}(x) \leq f_{3}(x)<L+\epsilon,
$$

i.e., $\left|f_{2}(x)-L\right|<\epsilon$. This proves that

$$
\lim _{x \rightarrow a+} f_{2}(x)=L
$$

16. P163. \# 20.20

Proof. (a). We first discuss the case where $-\infty<L_{2}<\infty$. The limit $\lim _{x \rightarrow a^{S}} f_{1}(x)=\infty$ implies, for any $M>0$, there exists $\delta_{1}>0$ such that for $0<|x-a|<\delta_{1}$ and $x \in S$,

$$
f_{1}(x)>M-\left(L_{2}-1\right)
$$

Since $\lim _{x \rightarrow a^{s}} f_{2}(x)=L_{2}$, for $\epsilon=1$, there exists $\delta_{2}>0$ such that for $0<|x-a|<\delta_{2}$ and $x \in S$,

$$
\left|f_{2}(x)-L_{2}\right|<\epsilon,
$$

i.e.,

$$
L_{2}-1<f_{2}(x)<L_{2}+1
$$

Then for $0<|x-a|<\min \left\{\delta_{1}, \delta_{2}\right\}$ and $x \in S$,

$$
f_{1}(x)+f_{2}(x)>M-\left(L_{2}-1\right)+\left(L_{2}-1\right)=M .
$$

This proves that $\lim _{x \rightarrow a^{s}} f_{1}(x)+f_{2}(x)=\infty$. The case where $L_{2}=\infty$ is similar.
(b). We first discuss the case where $-\infty<L_{2}<\infty$.

Since $\lim _{x \rightarrow a^{S}} f_{2}(x)=L_{2}$, for $\epsilon=\frac{L_{2}}{2}$, there exists $\delta_{2}>0$ such that for $0<|x-a|<\delta_{2}$ and $x \in S$,

$$
\left|f_{2}(x)-L_{2}\right|<\epsilon,
$$

i.e.,

$$
\frac{L_{2}}{2}<f_{2}(x)<\frac{3 L_{2}}{2} .
$$

The limit $\lim _{x \rightarrow a^{S}} f_{1}(x)=\infty$ implies, for any $M>0$, there exists $\delta_{1}>0$ such that for $0<|x-a|<\delta_{1}$ and $x \in S$,

$$
f_{1}(x)>\frac{M}{L_{2} / 2}
$$

Then for $0<|x-a|<\min \left\{\delta_{1}, \delta_{2}\right\}$ and $x \in S$,

$$
f_{1}(x) f_{2}(x)>\frac{M}{L_{2} / 2} \times \frac{L_{2}}{2}=M .
$$

This proves that $\lim _{x \rightarrow a^{S}} f_{1}(x) f_{2}(x)=\infty$. The case where $L_{2}=\infty$ is similar.
(c). This is similar to part (b).
(d).It can be any positive real number. Let $a>0 \in \mathbb{R}$.

$$
\lim _{x \rightarrow 1+} \frac{a}{x-1}=\infty ; \lim _{x \rightarrow 1+} x-1=0
$$

But

$$
\lim _{x \rightarrow 1+} \frac{a}{x-1} \times(x-1)=a .
$$

Department of Mathematics, KU, Lawrence, KS 66045

E-mail address: slshao@math.ku.edu

