HOMEWORK 6

SHUANGLIN SHAO

ABSTRACT. Please send me an email if you find mistakes. Thanks.

1. P192. # 23.1

Proof. (b). a, = %. Then
1
limsup V/|ay| = limsup — = 0.
n—00 n—oo 1

Sof=0. R= % = 00. Thus this series converges for all x.

(d). ap, = g—: Then

. ‘an+1’ . (n + 1)3 3™ 1
lim su = limsu X = —.
n—>oop |an| n—)oop n3 3ntl 3
Thus
1 1
=—-,R=-=3.
B 3 3

Then the radius of convergence is 3.

For z = £3, lim,, ..o (£1)"n? either goes to oo or does not exist. So the
power series diverges at £3.

Thus the exact interval of convergence is (—3, 3).

1
f a, = CES)ED
: [y (n+1)%22n 1
1 = = .
s Janl (4 2)220 T 2
Thus g = % and R = 2. So the radius of convergence is 2. For z = 2, the

power series reduces to Y o0, m, which converges.

For x = —2,it is ) %, which also converges. Thus the exact interval of

convergence is [—2,2].



li |an+1‘ li n24n 1
1m su =lmsup ———— = —.
n—)oop ’an| n—>oop (n + 1)24n+1 4

So B = %. Then R = 4, which is the radius of convergence. For the exact
interval of convergence, we consider +4. For x = 4, the power series reduces

to
0 _1)n
>

n=1

which converges. For x = —4, the power series reduces to
o0
>
2
n
n=1

which converges. Therefore the exact interval of convergence is [—4,4]. O

2. P192. #23.2

Proof. (a). a, = /n.
. ‘anJrl’ RT vn+1
lim = lim

n— 00 |an| n—00 \/ﬁ =1L

Thus 6 =1, R = % = 1. This implies that the radius of convergence is 1.
For x = +1, the limit of the sequence does not converge to zero. So the
exact interval of convergence is (—1,1).

(b). a, = nl .

(c).

n!, for k =nl!,
ap =
0, for other k.

Then
limsup {/|a,| = 1.
n—oo

So B8 =1. Then R = 1, which is the radius of convergence. For x = +1, the
limit of the sequence does not converge to zero. Hence the exact interval of
convergence is (—1,1).

(d).

3n _
0 — T for k =2n+1,
0, for other n.

2



Then

. . g 3w

limsup ¥/|a,| = limsup >/ “= = lim ——— = V3.

n—o00 n—00 \/ﬁ =00 ) 3(En+1)
So 8 =1/3. Then R = %, which is the radius of convergence. For x = %,
the power series reduces to

1
>

. Hence the power series diverges. For x = —%, the power series reduces
to

Y 7
3n
Hence the power series diverges, either. So the exact interval of convergence

is (—%, ). O

Sl

3. P192. #23.4

Proof. (a).For a, = (W)n’

442(-1)" 6
lim sup(a,, )/ = lim sup +2=1) =-.

442(-1)" 2
lim inf(a,, )™ = lim sup 4+ 21" = .

li Ani1| _ s (4 + 2(—1)"+1>n+1 ( 5 )n
1m su = l1msu e — —_— =0
n—)oop an n—>oop ) 44 2(_1)71
. a , 4+2(—1)"+1)”“< 5 )"
hm su = hIIl su —_— —_— = O
n~>oop Qn nﬁoop < ) 4 + 2(—1)"

(b). Both series diverge because

442(-1)" 6
lim sup(ay,)"/™ = lim sup 4+2=1" =-.
n—o0 n—o0 ) )

(c). For the power series, > a,x", the radius of convergence is %. For
T = %, the power series is
Z 44 2(—1)"\"
6 .

It diverges because the limit of the sequence does not converge to zero,

4+ 2é—1)”>" .

Likewise for z = —2. So the exact interval of convergence is (—2, 2). O
3

lim sup <

n—oo



4. P192.#23.5

Proof. (a). We prove it by contradiction. If R > 1, then for |z| < R, the
series converges for |r| < R. We take xg such that 1 < 9 < R. Then for
the series ) anxy, if all a,, are integers and if infinitely many of them are
nonzero, then the limit of the sequence may not exist; or if it exists, it is
not zero. Indeed, the series ) anz{ converges. Then

limp—octnxy = 0.
This implies
lim |a,zi| = 0.
n—oo
A contradiction. So R < 1.

(b). If limsup|ay,| > 0, then there exists a subsequence ay,, such that

lim |ay, | = limsup |a,|.
k—o0 n—00

So limg_,e0 |an, | > 0. Next the proof goes similarly as in part (a). We prove
it by contradiction. If R > 1, then for |z| < R, the series converges for
|z] < R. We take xo such that 1 < xzp < R. Then the series ) apz{
converges. Then

limy—octnxy = 0.
This implies
lim |a,zi| = 0.
n—oo
In particular,
lim |a,,z(*| = 0.
— 00

A contradiction. So R < 1. O

5. P193. # 23.6

Proof. (a). This follows from comparison test. We know that ) a,R"
converges, then

lan(—R)"| = ap R".
So > an(—R)™ converges.

(b). >0y #x” The exact interval of convergence for this power series

is (—1,1]. O



6. P230. # 28.1

Proof. Since the absolute value function f(z) = |z| is not differentiable at
zero. So for (a), the set of the points where it is not differential is {0}.

For (b), the set of points where it is not differentiable is = such that
sinz = 0,
ie.,

x e {kn:keZ)

For (c), the set of points where it is not differentiable is = such that

z2—-1=0,
i.e.,
xe{l,—1}.
]
7. P30. #28.2
Proof. (a). We compute
2+ h)? — 23 2) 4+ h?
i GFR =2, SRR AT lim 6(h + 2) + A% = 12.
h—0 h h—0 h h—0

(b).
lim (a+h+2)—(a+2) .
h—0 h
(c).
2 02
lim (h+0)?cos(h +0) — 0°cos0 — lim hcosh — 0.
h—0 h h—0
(d).
3(1+h)+4
. 2(+h)-1 7 . 11
li — lim = —11.
h—0 h—02h + 1



8. P230. # 28.3

Proof. (a). For a > 0,

lim

sa x—a  ava\/T+a 2Va
where /z — \/a = \/gjrf/a

(b). For a # 0,
i .'131/3 _ a1/3 i 1 1
ml_rf}l T —a o ;3; 23/2 4 21/3g1/3 4 q2/3 T 302/3

because z — a = (/3 — a/3) (232 + £1/3a/3 + a?/3).

(c). No. We consider the definition. We write

h—0 " h—0 h2/3

1/3

which is not finite. So the derivative of z'/° at 0 does not exist. O

9. P230. # 28.4

Proof. (a).We know that sin% is a composition of two functions, sin x and
%, the latter of which is differentiable at = # 0. sin x is differentiable every-
where. So sini is differentiable at x # 0 by Theorem 28.4. By Theorem
28.3, x2 sin% is differentiable at x # 0.

1 1
f'(a) = 2asin = — cos —.
a a

(b). We compute

. (0+h)?sint —0
lim
h—0 h

= lim hsin1 =0.
h—0 h

(c). Since cos la is not continuous at a = 0, f’(a) is not continuous at a = 0.

O



10. P231. # 28.7

Proof. Part (a) is skipped. For part (b), since f(0) =0,

2 _
hmw:hmh:&
h—0 h h—0

(c). For x >0, f'(x) = 2x. For 2 <0, f'(z) =0.

(d). f'is clearly continuous at x = 0. So f’ is continuous on R. However,
it is not differentiable at x = 0 because

L FO+1) = 1(0)

=2
h—0+ h ’
and ) )
iy 4O+ = fO)
h—0— h
O
11. P231. # 28.11
Proof. By the chain rule twice,
(hogo f)(a)="h(go f(a)) x ¢'(f(a))f (a).
O
12. P231. # 28.12
Proof. We know that
cos' z = —sinz, (%) = €%, and (z") = na"" 1,
By chain rule,
%3z
deos(e” —7) COS(; ) = —sin ex5*3x6x5*3“”(5x4 —3).
x
O

13. P231. #28.14

Proof. (a). We know that



Let h =z — a. Then z — a is equivalent to h — 0, and x = a + h. So

) — tn a0 = F )

h—0 h

(b). We write

fla+h)—fla—h) (fla+h) = f(a)) + (f(a) = fla=h))

Jim n = hmy oh
U flath)—fla) . f(a)— fla—h)

— g (i TR I gy SO = f )
~ '(a).

14. P231. # 28.16

Proof. “=". We define
e(r) = {W — f(a), for x # a,
0, for z = a.
Then
f@) = fla) = (z = a)(f(a) — ().

and since f is differentiable at a,

ilg(ll e(z) =0.
“<.” For z # a,
tim PO IO _ i (110) — () = f'(a).

So f is differentiable at a and its derivative is f’(a).
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