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Abstract. Please send me an email if you find mistakes. Thanks.

1. P192. # 23.1

Proof. (b). an = 1
nn . Then

lim sup
n→∞

n
√
|an| = lim sup

n→∞

1

n
= 0.

So β = 0. R = 1
β =∞. Thus this series converges for all x.

(d). an = n3

3n . Then

lim sup
n→∞

|an+1|
|an|

= lim sup
n→∞

(n+ 1)3

n3
× 3n

3n+1
=

1

3
.

Thus

β =
1

3
, R =

1

β
= 3.

Then the radius of convergence is 3.

For x = ±3, limn→∞(±1)nn3 either goes to ∞ or does not exist. So the
power series diverges at ±3.

Thus the exact interval of convergence is (−3, 3).

f. an = 1
(n+1)22n

.

lim sup
n→∞

|an+1|
|an|

=
(n+ 1)22n

(n+ 2)22n+1
=

1

2
.

Thus β = 1
2 and R = 2. So the radius of convergence is 2. For x = 2, the

power series reduces to
∑∞

n=1
1

(n+1)2
, which converges.

For x = −2,it is
∑ (−1)n

(n+1)2
, which also converges. Thus the exact interval of

convergence is [−2, 2].
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(h). an = (−1)n
n24n

.

lim sup
n→∞

|an+1|
|an|

= lim sup
n→∞

n24n

(n+ 1)24n+1
=

1

4
.

So β = 1
4 . Then R = 4, which is the radius of convergence. For the exact

interval of convergence, we consider ±4. For x = 4, the power series reduces
to

∞∑
n=1

(−1)n

n2
,

which converges. For x = −4, the power series reduces to

∞∑
n=1

1

n2

which converges. Therefore the exact interval of convergence is [−4, 4]. �

2. P192. #23.2

Proof. (a). an =
√
n.

lim
n→∞

|an+1|
|an|

= lim
n→∞

√
n+ 1√
n

= 1.

Thus β = 1, R = 1
β = 1. This implies that the radius of convergence is 1.

For x = ±1, the limit of the sequence does not converge to zero. So the
exact interval of convergence is (−1, 1).

(b). an = 1
n
√
n .

(c).

ak =

{
n!, for k = n!,

0, for other k.

Then

lim sup
n→∞

n
√
|an| = 1.

So β = 1. Then R = 1, which is the radius of convergence. For x = ±1, the
limit of the sequence does not converge to zero. Hence the exact interval of
convergence is (−1, 1).

(d).

an =

{
3n√
n
, for k = 2n+ 1,

0, for other n.
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Then

lim sup
n→∞

n
√
|an| = lim sup

n→∞
2n+1

√
3n√
n

= lim
n→∞

3
n

2n+1

n
1

2(2n+1)

=
√

3.

So β =
√

3. Then R = 1√
3
, which is the radius of convergence. For x = 1√

3
,

the power series reduces to ∑ 1√
3n

. Hence the power series diverges. For x = − 1√
3
, the power series reduces

to

−
∑ 1√

3n
.

Hence the power series diverges, either. So the exact interval of convergence
is (− 1√

3
, 1√

3
). �

3. P192. #23.4

Proof. (a).For an =
(
4+2(−1)n

5

)n
,

lim sup
n→∞

(an)1/n = lim sup
n→∞

4 + 2(−1)n

5
=

6

5
.

lim inf
n→∞

(an)1/n = lim sup
n→∞

4 + 2(−1)n

5
=

2

5
.

lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim sup
n→∞

(
4 + 2(−1)n+1

5

)n+1(
5

4 + 2(−1)n

)n
=∞.

lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim sup
n→∞

(
4 + 2(−1)n+1

5

)n+1(
5

4 + 2(−1)n

)n
= 0.

(b). Both series diverge because

lim sup
n→∞

(an)1/n = lim sup
n→∞

4 + 2(−1)n

5
=

6

5
.

(c). For the power series,
∑
anx

n, the radius of convergence is 5
6 . For

x = 5
6 , the power series is ∑(

4 + 2(−1)n

6

)n
.

It diverges because the limit of the sequence does not converge to zero,

lim sup
n→∞

(
4 + 2(−1)n

6

)n
= 1.

Likewise for x = −5
6 . So the exact interval of convergence is (−5

6 ,
5
6). �
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4. P192.#23.5

Proof. (a). We prove it by contradiction. If R > 1, then for |x| < R, the
series converges for |x| < R. We take x0 such that 1 < x0 < R. Then for
the series

∑
anx

n
0 , if all an are integers and if infinitely many of them are

nonzero, then the limit of the sequence may not exist; or if it exists, it is
not zero. Indeed, the series

∑
anx

n
0 converges. Then

limn→∞anx
n
0 = 0.

This implies

lim
n→∞

|anxn0 | = 0.

A contradiction. So R ≤ 1.

(b). If lim sup |an| > 0, then there exists a subsequence ank
such that

lim
k→∞

|ank
| = lim sup

n→∞
|an|.

So limk→∞ |ank
| > 0. Next the proof goes similarly as in part (a). We prove

it by contradiction. If R > 1, then for |x| < R, the series converges for
|x| < R. We take x0 such that 1 < x0 < R. Then the series

∑
anx

n
0

converges. Then

limn→∞anx
n
0 = 0.

This implies

lim
n→∞

|anxn0 | = 0.

In particular,

lim
k→∞

|ank
xnk
0 | = 0.

A contradiction. So R ≤ 1. �

5. P193. # 23.6

Proof. (a). This follows from comparison test. We know that
∑
anR

n

converges, then

|an(−R)n| = anR
n.

So
∑
an(−R)n converges.

(b).
∑∞

n=1
(−1)n
n xn. The exact interval of convergence for this power series

is (−1, 1]. �
4



6. P230. # 28.1

Proof. Since the absolute value function f(x) = |x| is not differentiable at
zero. So for (a), the set of the points where it is not differential is {0}.

For (b), the set of points where it is not differentiable is x such that

sinx = 0,

i.e.,

x ∈ {kπ : k ∈ Z}.

For (c), the set of points where it is not differentiable is x such that

x2 − 1 = 0,

i.e.,

x ∈ {1,−1}.

�

7. P30. #28.2

Proof. (a). We compute

lim
h→0

(2 + h)3 − 23

h
= lim

h→0

6h(h+ 2) + h3

h
= lim

h→0
6(h+ 2) + h2 = 12.

(b).

lim
h→0

(a+ h+ 2)− (a+ 2)

h
= 1.

(c).

lim
h→0

(h+ 0)2 cos(h+ 0)− 02 cos 0

h
= lim

h→0
h cosh = 0.

(d).

lim
h→0

3(1+h)+4
2(1+h)−1 − 7

h
= − lim

h→0

11

2h+ 1
= −11.

�
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8. P230. # 28.3

Proof. (a). For a > 0,

lim
x→a

√
x−
√
a

x− a
= lim

x→a

1√
x+
√
a

=
1

2
√
a
,

where
√
x−
√
a = x−a√

x+
√
a
.

(b). For a 6= 0,

lim
x→a

x1/3 − a1/3

x− a
= lim

x→a

1

x3/2 + x1/3a1/3 + a2/3
=

1

3a2/3

because x− a = (x1/3 − a1/3)(x3/2 + x1/3a1/3 + a2/3).

(c). No. We consider the definition. We write

lim
h→0

(0 + h)1/3 − 0

h
= lim

h→0

1

h2/3
=∞,

which is not finite. So the derivative of x1/3 at 0 does not exist. �

9. P230. # 28.4

Proof. (a).We know that sin 1
x is a composition of two functions, sinx and

1
x , the latter of which is differentiable at x 6= 0. sinx is differentiable every-

where. So sin 1
x is differentiable at x 6= 0 by Theorem 28.4. By Theorem

28.3, x2 sin 1
x is differentiable at x 6= 0.

f ′(a) = 2a sin
1

a
− cos

1

a
.

(b). We compute

lim
h→0

(0 + h)2 sin 1
h − 0

h
= lim

h→0
h sin

1

h
= 0.

(c). Since cos 1a is not continuous at a = 0, f ′(a) is not continuous at a = 0.

�
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10. P231. # 28.7

Proof. Part (a) is skipped. For part (b), since f(0) = 0,

lim
h→0

(0 + h)2 − 0

h
= lim

h→0
h = 0.

(c). For x > 0, f ′(x) = 2x. For x < 0, f ′(x) = 0.

(d). f ′ is clearly continuous at x = 0. So f ′ is continuous on R. However,
it is not differentiable at x = 0 because

lim
h→0+

f ′(0 + h)− f ′(0)

h
= 2,

and

lim
h→0−

f ′(0 + h)− f ′(0)

h
= 0.

�

11. P231. # 28.11

Proof. By the chain rule twice,

(h ◦ g ◦ f)′(a) = h′(g ◦ f(a))× g′(f(a))f ′(a).

�

12. P231. # 28.12

Proof. We know that

cos′ x = − sinx, (ex)′ = ex, and (xn)′ = nxn−1,

By chain rule,

d cos(ex
5−3x)

dx
= − sin ex

5−3xex
5−3x(5x4 − 3).

�

13. P231. #28.14

Proof. (a). We know that

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.
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Let h = x− a. Then x→ a is equivalent to h→ 0, and x = a+ h. So

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

(b). We write

lim
h→0

f(a+ h)− f(a− h)

h
= lim

h→0

(f(a+ h)− f(a)) + (f(a)− f(a− h))

2h

=
1

2

(
lim
h→0

f(a+ h)− f(a)

h
+ lim
h→0

f(a)− f(a− h)

h

)
= f ′(a).

�

14. P231. # 28.16

Proof. “⇒”. We define

ε(x) =

{
f(x)−f(a)

x−a − f ′(a), for x 6= a,

0, for x = a.

Then
f(x)− f(a) = (x− a)(f ′(a)− ε(x)).

and since f is differentiable at a,

lim
x→a

ε(x) = 0.

“⇐. ” For x 6= a,

lim
x→a

f(x)− f(a)

x− a
= lim

x→a
(f ′(a)− ε(x)) = f ′(a).

So f is differentiable at a and its derivative is f ′(a). �
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