HOMEWORK 6

SHUANGLIN SHAO

ABSTRACT. Please send me an email if you find mistakes. Thanks.

1. P192. # 23.1

Proof. (b). $a_n = \frac{1}{n^n}$. Then

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \limsup_{n \to \infty} \frac{1}{n} = 0.$$

So $\beta = 0$. $R = \frac{1}{\beta} = \infty$. Thus this series converges for all x.

(d). $a_n = \frac{n^3}{3^n}$. Then

$$\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \limsup_{n \to \infty} \frac{(n+1)^3}{n^3} \times \frac{3^n}{3^{n+1}} = \frac{1}{3}.$$

Thus

$$\beta = \frac{1}{3}, R = \frac{1}{\beta} = 3.$$

Then the radius of convergence is 3.

For $x = \pm 3$, $\lim_{n\to\infty} (\pm 1)^n n^3$ either goes to ∞ or does not exist. So the power series diverges at ± 3 .

Thus the exact interval of convergence is (-3, 3).

f. $a_n = \frac{1}{(n+1)^2 2^n}$.

$$\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \frac{(n+1)^2 2^n}{(n+2)^2 2^{n+1}} = \frac{1}{2}.$$

Thus $\beta = \frac{1}{2}$ and R = 2. So the radius of convergence is 2. For x = 2, the power series reduces to $\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$, which converges.

For x = -2, it is $\sum \frac{(-1)^n}{(n+1)^2}$, which also converges. Thus the exact interval of convergence is [-2, 2].

(h).
$$a_n = \frac{(-1)^n}{n^2 4^n}$$
.
$$\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \limsup_{n \to \infty} \frac{n^2 4^n}{(n+1)^2 4^{n+1}} = \frac{1}{4}.$$

So $\beta = \frac{1}{4}$. Then R = 4, which is the radius of convergence. For the exact interval of convergence, we consider ± 4 . For x = 4, the power series reduces to

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2},$$

which converges. For x = -4, the power series reduces to

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

which converges. Therefore the exact interval of convergence is [-4, 4]. \Box

Proof. (a). $a_n = \sqrt{n}$.

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{\sqrt{n+1}}{\sqrt{n}} = 1.$$

Thus $\beta = 1$, $R = \frac{1}{\beta} = 1$. This implies that the radius of convergence is 1. For $x = \pm 1$, the limit of the sequence does not converge to zero. So the exact interval of convergence is (-1, 1).

(b). $a_n = \frac{1}{n^{\sqrt{n}}}$. (c).

$$a_k = \begin{cases} n!, & \text{for } k = n!, \\ 0, & \text{for other } k. \end{cases}$$

Then

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = 1.$$

So $\beta = 1$. Then R = 1, which is the radius of convergence. For $x = \pm 1$, the limit of the sequence does not converge to zero. Hence the exact interval of convergence is (-1, 1).

(d).

$$a_n = \begin{cases} \frac{3^n}{\sqrt{n}}, & \text{for } k = 2n+1, \\ 0, & \text{for other } n. \end{cases}$$

Then

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \limsup_{n \to \infty} \sqrt[2n+1]{\frac{3^n}{\sqrt{n}}} = \lim_{n \to \infty} \frac{3^{\frac{n}{2n+1}}}{n^{\frac{1}{2(2n+1)}}} = \sqrt{3}.$$

So $\beta = \sqrt{3}$. Then $R = \frac{1}{\sqrt{3}}$, which is the radius of convergence. For $x = \frac{1}{\sqrt{3}}$, the power series reduces to

$$\sum \frac{1}{\sqrt{3n}}$$

. Hence the power series diverges. For $x = -\frac{1}{\sqrt{3}}$, the power series reduces to

$$-\sum \frac{1}{\sqrt{3n}}$$

Hence the power series diverges, either. So the exact interval of convergence is $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.

Proof. (a). For
$$a_n = \left(\frac{4+2(-1)^n}{5}\right)^n$$
,

$$\lim_{n \to \infty} \sup(a_n)^{1/n} = \limsup_{n \to \infty} \frac{4+2(-1)^n}{5} = \frac{6}{5}.$$

$$\lim_{n \to \infty} \inf(a_n)^{1/n} = \limsup_{n \to \infty} \frac{4+2(-1)^n}{5} = \frac{2}{5}.$$

$$\lim_{n \to \infty} \sup \left|\frac{a_{n+1}}{a_n}\right| = \limsup_{n \to \infty} \left(\frac{4+2(-1)^{n+1}}{5}\right)^{n+1} \left(\frac{5}{4+2(-1)^n}\right)^n = \infty.$$

$$\lim_{n \to \infty} \sup \left|\frac{a_{n+1}}{a_n}\right| = \limsup_{n \to \infty} \left(\frac{4+2(-1)^{n+1}}{5}\right)^{n+1} \left(\frac{5}{4+2(-1)^n}\right)^n = 0.$$

(b). Both series diverge because

$$\limsup_{n \to \infty} (a_n)^{1/n} = \limsup_{n \to \infty} \frac{4 + 2(-1)^n}{5} = \frac{6}{5}.$$

(c). For the power series, $\sum a_n x^n$, the radius of convergence is $\frac{5}{6}$. For $x = \frac{5}{6}$, the power series is

$$\sum \left(\frac{4+2(-1)^n}{6}\right)^n.$$

It diverges because the limit of the sequence does not converge to zero,

$$\limsup_{n \to \infty} \left(\frac{4 + 2(-1)^n}{6} \right)^n = 1.$$

Likewise for $x = -\frac{5}{6}$. So the exact interval of convergence is $(-\frac{5}{6}, \frac{5}{6})$.

4. P192.#23.5

Proof. (a). We prove it by contradiction. If R > 1, then for |x| < R, the series converges for |x| < R. We take x_0 such that $1 < x_0 < R$. Then for the series $\sum a_n x_0^n$, if all a_n are integers and if infinitely many of them are nonzero, then the limit of the sequence may not exist; or if it exists, it is not zero. Indeed, the series $\sum a_n x_0^n$ converges. Then

$$\lim_{n \to \infty} a_n x_0^n = 0.$$

This implies

$$\lim_{n \to \infty} |a_n x_0^n| = 0.$$

A contradiction. So $R \leq 1$.

(b). If $\limsup |a_n| > 0$, then there exists a subsequence a_{n_k} such that

$$\lim_{k \to \infty} |a_{n_k}| = \limsup_{n \to \infty} |a_n|.$$

So $\lim_{k\to\infty} |a_{n_k}| > 0$. Next the proof goes similarly as in part (a). We prove it by contradiction. If R > 1, then for |x| < R, the series converges for |x| < R. We take x_0 such that $1 < x_0 < R$. Then the series $\sum a_n x_0^n$ converges. Then

$$\lim_{n \to \infty} a_n x_0^n = 0.$$

This implies

$$\lim_{n \to \infty} |a_n x_0^n| = 0.$$

In particular,

$$\lim_{k \to \infty} |a_{n_k} x_0^{n_k}| = 0$$

A contradiction. So $R \leq 1$.

Proof. (a). This follows from comparison test. We know that $\sum a_n R^n$ converges, then

$$|a_n(-R)^n| = a_n R^n.$$

So $\sum a_n (-R)^n$ converges.

(b). $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$. The exact interval of convergence for this power series is (-1, 1].

Proof. Since the absolute value function f(x) = |x| is not differentiable at zero. So for (a), the set of the points where it is not differential is $\{0\}$.

For (b), the set of points where it is not differentiable is x such that

$$\sin x = 0,$$

 ${\rm i.e.},$

$$x \in \{k\pi : k \in \mathbb{Z}\}.$$

For (c), the set of points where it is not differentiable is x such that

$$x^2 - 1 = 0.$$

i.e.,

$$x \in \{1, -1\}.$$

г		п.
L		L
L		L
_		

7. P30. #28.2

Proof. (a). We compute

$$\lim_{h \to 0} \frac{(2+h)^3 - 2^3}{h} = \lim_{h \to 0} \frac{6h(h+2) + h^3}{h} = \lim_{h \to 0} 6(h+2) + h^2 = 12.$$

(b).

$$\lim_{h \to 0} \frac{(a+h+2) - (a+2)}{h} = 1.$$

(c).

$$\lim_{h \to 0} \frac{(h+0)^2 \cos(h+0) - 0^2 \cos 0}{h} = \lim_{h \to 0} h \cos h = 0.$$

(d).

$$\lim_{h \to 0} \frac{\frac{3(1+h)+4}{2(1+h)-1} - 7}{h} = -\lim_{h \to 0} \frac{11}{2h+1} = -11.$$

Proof. (a). For a > 0,

$$\lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x - a} = \lim_{x \to a} \frac{1}{\sqrt{x} + \sqrt{a}} = \frac{1}{2\sqrt{a}},$$

where $\sqrt{x} - \sqrt{a} = \frac{x-a}{\sqrt{x} + \sqrt{a}}$.

(b). For $a \neq 0$,

$$\lim_{x \to a} \frac{x^{1/3} - a^{1/3}}{x - a} = \lim_{x \to a} \frac{1}{x^{3/2} + x^{1/3}a^{1/3} + a^{2/3}} = \frac{1}{3a^{2/3}}$$

because $x - a = (x^{1/3} - a^{1/3})(x^{3/2} + x^{1/3}a^{1/3} + a^{2/3}).$

(c). No. We consider the definition. We write

$$\lim_{h \to 0} \frac{(0+h)^{1/3} - 0}{h} = \lim_{h \to 0} \frac{1}{h^{2/3}} = \infty,$$

which is not finite. So the derivative of $x^{1/3}$ at 0 does not exist.

9. P230. # 28.4

Proof. (a).We know that $\sin \frac{1}{x}$ is a composition of two functions, $\sin x$ and $\frac{1}{x}$, the latter of which is differentiable at $x \neq 0$. $\sin x$ is differentiable everywhere. So $\sin \frac{1}{x}$ is differentiable at $x \neq 0$ by Theorem 28.4. By Theorem 28.3, $x^2 \sin \frac{1}{x}$ is differentiable at $x \neq 0$.

$$f'(a) = 2a\sin\frac{1}{a} - \cos\frac{1}{a}.$$

(b). We compute

$$\lim_{h \to 0} \frac{(0+h)^2 \sin \frac{1}{h} - 0}{h} = \lim_{h \to 0} h \sin \frac{1}{h} = 0.$$

(c). Since $\cos 1a$ is not continuous at a = 0, f'(a) is not continuous at a = 0.

10. P231. # 28.7

Proof. Part (a) is skipped. For part (b), since f(0) = 0,

$$\lim_{h \to 0} \frac{(0+h)^2 - 0}{h} = \lim_{h \to 0} h = 0.$$

(c). For x > 0, f'(x) = 2x. For x < 0, f'(x) = 0.

(d). f' is clearly continuous at x = 0. So f' is continuous on \mathbb{R} . However, it is not differentiable at x = 0 because

$$\lim_{h \to 0+} \frac{f'(0+h) - f'(0)}{h} = 2,$$

and

$$\lim_{h \to 0^{-}} \frac{f'(0+h) - f'(0)}{h} = 0.$$

г		
L		

11. P231. # 28.11

Proof. By the chain rule twice,

$$(h \circ g \circ f)'(a) = h'(g \circ f(a)) \times g'(f(a))f'(a).$$

Proof. We know that

$$\cos' x = -\sin x, (e^x)' = e^x, \text{ and } (x^n)' = nx^{n-1},$$

By chain rule,

$$\frac{d\cos(e^{x^5-3x})}{dx} = -\sin e^{x^5-3x}e^{x^5-3x}(5x^4-3).$$

13. P231. #28.14

Proof. (a). We know that

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Let h = x - a. Then $x \to a$ is equivalent to $h \to 0$, and x = a + h. So

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

(b). We write

$$\lim_{h \to 0} \frac{f(a+h) - f(a-h)}{h} = \lim_{h \to 0} \frac{(f(a+h) - f(a)) + (f(a) - f(a-h))}{2h}$$
$$= \frac{1}{2} \left(\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} + \lim_{h \to 0} \frac{f(a) - f(a-h)}{h} \right)$$
$$= f'(a).$$

14. P231. # 28.16

Proof. " \Rightarrow ". We define

$$\epsilon(x) = \begin{cases} \frac{f(x) - f(a)}{x - a} - f'(a), & \text{for } x \neq a, \\ 0, & \text{for } x = a. \end{cases}$$

Then

$$f(x) - f(a) = (x - a)(f'(a) - \epsilon(x)).$$

and since f is differentiable at a,

$$\lim_{x\to a}\epsilon(x)=0$$

" \Leftarrow ." For $x \neq a$,

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} (f'(a) - \epsilon(x)) = f'(a).$$

So f is differentiable at a and its derivative is f'(a).

DEPARTMENT OF MATHEMATICS, KU, LAWRENCE, KS 66045

 $E\text{-}mail\ address:\ \texttt{slshao}\texttt{Cmath.ku.edu}$