HOMEWORK 6

SHUANGLIN SHAO

Abstract. Please send me an email if you find mistakes. Thanks.

1. P192. \# 23.1

Proof. (b). $a_{n}=\frac{1}{n^{n}}$. Then

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\limsup _{n \rightarrow \infty} \frac{1}{n}=0
$$

So $\beta=0$. $R=\frac{1}{\beta}=\infty$. Thus this series converges for all x.
(d). $a_{n}=\frac{n^{3}}{3^{n}}$. Then

$$
\limsup _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\limsup _{n \rightarrow \infty} \frac{(n+1)^{3}}{n^{3}} \times \frac{3^{n}}{3^{n+1}}=\frac{1}{3}
$$

Thus

$$
\beta=\frac{1}{3}, R=\frac{1}{\beta}=3
$$

Then the radius of convergence is 3 .
For $x= \pm 3, \lim _{n \rightarrow \infty}(\pm 1)^{n} n^{3}$ either goes to ∞ or does not exist. So the power series diverges at ± 3.

Thus the exact interval of convergence is $(-3,3)$.
f. $a_{n}=\frac{1}{(n+1)^{2} 2^{n}}$.

$$
\limsup _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{(n+1)^{2} 2^{n}}{(n+2)^{2} 2^{n+1}}=\frac{1}{2}
$$

Thus $\beta=\frac{1}{2}$ and $R=2$. So the radius of convergence is 2 . For $x=2$, the power series reduces to $\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}$, which converges.

For $x=-2$, it is $\sum \frac{(-1)^{n}}{(n+1)^{2}}$, which also converges. Thus the exact interval of convergence is $[-2,2]$.
(h). $a_{n}=\frac{(-1)^{n}}{n^{2} 4^{n}}$.

$$
\limsup _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\underset{n \rightarrow \infty}{\limsup } \frac{n^{2} 4^{n}}{(n+1)^{2} 4^{n+1}}=\frac{1}{4} .
$$

So $\beta=\frac{1}{4}$. Then $R=4$, which is the radius of convergence. For the exact interval of convergence, we consider ± 4. For $x=4$, the power series reduces to

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

which converges. For $x=-4$, the power series reduces to

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

which converges. Therefore the exact interval of convergence is $[-4,4]$.
2. P192. \#23.2

Proof. (a). $a_{n}=\sqrt{n}$.

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\sqrt{n+1}}{\sqrt{n}}=1 .
$$

Thus $\beta=1, R=\frac{1}{\beta}=1$. This implies that the radius of convergence is 1 . For $x= \pm 1$, the limit of the sequence does not converge to zero. So the exact interval of convergence is $(-1,1)$.
(b). $a_{n}=\frac{1}{n \sqrt{n}}$.
(c).

$$
a_{k}= \begin{cases}n!, & \text { for } k=n!, \\ 0, & \text { for other } k\end{cases}
$$

Then

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1
$$

So $\beta=1$. Then $R=1$, which is the radius of convergence. For $x= \pm 1$, the limit of the sequence does not converge to zero. Hence the exact interval of convergence is $(-1,1)$.
(d).

$$
a_{n}= \begin{cases}\frac{3^{n}}{\sqrt{n}}, & \text { for } k=2 n+1, \\ 0, & \text { for other } n\end{cases}
$$

Then

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\limsup _{n \rightarrow \infty} \sqrt[2 n+1]{\frac{3^{n}}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{3^{\frac{n}{2 n+1}}}{n^{\frac{1}{2(2 n+1)}}}=\sqrt{3} .
$$

So $\beta=\sqrt{3}$. Then $R=\frac{1}{\sqrt{3}}$, which is the radius of convergence. For $x=\frac{1}{\sqrt{3}}$, the power series reduces to

$$
\sum \frac{1}{\sqrt{3 n}}
$$

. Hence the power series diverges. For $x=-\frac{1}{\sqrt{3}}$, the power series reduces to

$$
-\sum \frac{1}{\sqrt{3 n}}
$$

Hence the power series diverges, either. So the exact interval of convergence is $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.
3. P192. \#23.4

Proof. (a).For $a_{n}=\left(\frac{4+2(-1)^{n}}{5}\right)^{n}$,

$$
\begin{gathered}
\limsup _{n \rightarrow \infty}\left(a_{n}\right)^{1 / n}=\limsup _{n \rightarrow \infty} \frac{4+2(-1)^{n}}{5}=\frac{6}{5} . \\
\liminf _{n \rightarrow \infty}\left(a_{n}\right)^{1 / n}=\limsup _{n \rightarrow \infty} \frac{4+2(-1)^{n}}{5}=\frac{2}{5} . \\
\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\limsup _{n \rightarrow \infty}\left(\frac{4+2(-1)^{n+1}}{5}\right)^{n+1}\left(\frac{5}{4+2(-1)^{n}}\right)^{n}=\infty . \\
\limsup \left|\frac{a_{n+1}}{a_{n}}\right|=\limsup _{n \rightarrow \infty}\left(\frac{4+2(-1)^{n+1}}{5}\right)^{n+1}\left(\frac{5}{4+2(-1)^{n}}\right)^{n}=0 .
\end{gathered}
$$

(b). Both series diverge because

$$
\limsup _{n \rightarrow \infty}\left(a_{n}\right)^{1 / n}=\limsup _{n \rightarrow \infty} \frac{4+2(-1)^{n}}{5}=\frac{6}{5} .
$$

(c). For the power series, $\sum a_{n} x^{n}$, the radius of convergence is $\frac{5}{6}$. For $x=\frac{5}{6}$, the power series is

$$
\sum\left(\frac{4+2(-1)^{n}}{6}\right)^{n}
$$

It diverges because the limit of the sequence does not converge to zero,

$$
\limsup _{n \rightarrow \infty}\left(\frac{4+2(-1)^{n}}{6}\right)^{n}=1
$$

Likewise for $x=-\frac{5}{6}$. So the exact interval of convergence is $\left(-\frac{5}{6}, \frac{5}{6}\right)$.

Proof. (a). We prove it by contradiction. If $R>1$, then for $|x|<R$, the series converges for $|x|<R$. We take x_{0} such that $1<x_{0}<R$. Then for the series $\sum a_{n} x_{0}^{n}$, if all a_{n} are integers and if infinitely many of them are nonzero, then the limit of the sequence may not exist; or if it exists, it is not zero. Indeed, the series $\sum a_{n} x_{0}^{n}$ converges. Then

$$
\lim _{n \rightarrow \infty} a_{n} x_{0}^{n}=0 .
$$

This implies

$$
\lim _{n \rightarrow \infty}\left|a_{n} x_{0}^{n}\right|=0 .
$$

A contradiction. So $R \leq 1$.
(b). If $\lim \sup \left|a_{n}\right|>0$, then there exists a subsequence $a_{n_{k}}$ such that

$$
\lim _{k \rightarrow \infty}\left|a_{n_{k}}\right|=\limsup _{n \rightarrow \infty}\left|a_{n}\right| .
$$

So $\lim _{k \rightarrow \infty}\left|a_{n_{k}}\right|>0$. Next the proof goes similarly as in part (a). We prove it by contradiction. If $R>1$, then for $|x|<R$, the series converges for $|x|<R$. We take x_{0} such that $1<x_{0}<R$. Then the series $\sum a_{n} x_{0}^{n}$ converges. Then

$$
\lim _{n \rightarrow \infty} a_{n} x_{0}^{n}=0 .
$$

This implies

$$
\lim _{n \rightarrow \infty}\left|a_{n} x_{0}^{n}\right|=0 .
$$

In particular,

$$
\lim _{k \rightarrow \infty}\left|a_{n_{k}} x_{0}^{n_{k}}\right|=0 .
$$

A contradiction. So $R \leq 1$.

5. P193. \# 23.6

Proof. (a). This follows from comparison test. We know that $\sum a_{n} R^{n}$ converges, then

$$
\left|a_{n}(-R)^{n}\right|=a_{n} R^{n} .
$$

So $\sum a_{n}(-R)^{n}$ converges.
(b). $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} x^{n}$. The exact interval of convergence for this power series is $(-1,1]$.

$$
\text { 6. P230. \# } 28.1
$$

Proof. Since the absolute value function $f(x)=|x|$ is not differentiable at zero. So for (a), the set of the points where it is not differential is $\{0\}$.

For (b), the set of points where it is not differentiable is x such that

$$
\sin x=0
$$

i.e.,

$$
x \in\{k \pi: k \in \mathbb{Z}\} .
$$

For (c), the set of points where it is not differentiable is x such that

$$
x^{2}-1=0,
$$

i.e.,

$$
x \in\{1,-1\} .
$$

7. P30. \#28.2

Proof. (a). We compute

$$
\lim _{h \rightarrow 0} \frac{(2+h)^{3}-2^{3}}{h}=\lim _{h \rightarrow 0} \frac{6 h(h+2)+h^{3}}{h}=\lim _{h \rightarrow 0} 6(h+2)+h^{2}=12 .
$$

(b).

$$
\lim _{h \rightarrow 0} \frac{(a+h+2)-(a+2)}{h}=1 .
$$

(c).

$$
\lim _{h \rightarrow 0} \frac{(h+0)^{2} \cos (h+0)-0^{2} \cos 0}{h}=\lim _{h \rightarrow 0} h \cos h=0 .
$$

(d).

$$
\lim _{h \rightarrow 0} \frac{\frac{3(1+h)+4}{2(1+h)-1}-7}{h}=-\lim _{h \rightarrow 0} \frac{11}{2 h+1}=-11 .
$$

Proof. (a). For $a>0$,

$$
\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a}=\lim _{x \rightarrow a} \frac{1}{\sqrt{x}+\sqrt{a}}=\frac{1}{2 \sqrt{a}},
$$

where $\sqrt{x}-\sqrt{a}=\frac{x-a}{\sqrt{x}+\sqrt{a}}$.
(b). For $a \neq 0$,

$$
\lim _{x \rightarrow a} \frac{x^{1 / 3}-a^{1 / 3}}{x-a}=\lim _{x \rightarrow a} \frac{1}{x^{3 / 2}+x^{1 / 3} a^{1 / 3}+a^{2 / 3}}=\frac{1}{3 a^{2 / 3}}
$$

because $x-a=\left(x^{1 / 3}-a^{1 / 3}\right)\left(x^{3 / 2}+x^{1 / 3} a^{1 / 3}+a^{2 / 3}\right)$.
(c). No. We consider the definition. We write

$$
\lim _{h \rightarrow 0} \frac{(0+h)^{1 / 3}-0}{h}=\lim _{h \rightarrow 0} \frac{1}{h^{2 / 3}}=\infty,
$$

which is not finite. So the derivative of $x^{1 / 3}$ at 0 does not exist.

$$
\text { 9. P230. \# } 28.4
$$

Proof. (a).We know that $\sin \frac{1}{x}$ is a composition of two functions, $\sin x$ and $\frac{1}{x}$, the latter of which is differentiable at $x \neq 0 . \sin x$ is differentiable everywhere. So $\sin \frac{1}{x}$ is differentiable at $x \neq 0$ by Theorem 28.4. By Theorem 28.3, $x^{2} \sin \frac{1}{x}$ is differentiable at $x \neq 0$.

$$
f^{\prime}(a)=2 a \sin \frac{1}{a}-\cos \frac{1}{a} .
$$

(b). We compute

$$
\lim _{h \rightarrow 0} \frac{(0+h)^{2} \sin \frac{1}{h}-0}{h}=\lim _{h \rightarrow 0} h \sin \frac{1}{h}=0 .
$$

(c). Since $\cos 1 a$ is not continuous at $a=0, f^{\prime}(a)$ is not continuous at $a=0$.

Proof. Part (a) is skipped. For part (b), since $f(0)=0$,

$$
\lim _{h \rightarrow 0} \frac{(0+h)^{2}-0}{h}=\lim _{h \rightarrow 0} h=0 .
$$

(c). For $x>0, f^{\prime}(x)=2 x$. For $x<0, f^{\prime}(x)=0$.
(d). f^{\prime} is clearly continuous at $x=0$. So f^{\prime} is continuous on \mathbb{R}. However, it is not differentiable at $x=0$ because

$$
\lim _{h \rightarrow 0+} \frac{f^{\prime}(0+h)-f^{\prime}(0)}{h}=2,
$$

and

$$
\lim _{h \rightarrow 0-} \frac{f^{\prime}(0+h)-f^{\prime}(0)}{h}=0 .
$$

11. P231. \# 28.11

Proof. By the chain rule twice,

$$
(h \circ g \circ f)^{\prime}(a)=h^{\prime}(g \circ f(a)) \times g^{\prime}(f(a)) f^{\prime}(a) .
$$

12. P231. \# 28.12

Proof. We know that

$$
\cos ^{\prime} x=-\sin x,\left(e^{x}\right)^{\prime}=e^{x}, \text { and }\left(x^{n}\right)^{\prime}=n x^{n-1},
$$

By chain rule,

$$
\frac{d \cos \left(e^{x^{5}-3 x}\right)}{d x}=-\sin e^{x^{5}-3 x} e^{x^{5}-3 x}\left(5 x^{4}-3\right) .
$$

13. P231. \#28.14

Proof. (a). We know that

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Let $h=x-a$. Then $x \rightarrow a$ is equivalent to $h \rightarrow 0$, and $x=a+h$. So

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

(b). We write

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{h}=\lim _{h \rightarrow 0} \frac{(f(a+h)-f(a))+(f(a)-f(a-h))}{2 h} \\
& =\frac{1}{2}\left(\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}+\lim _{h \rightarrow 0} \frac{f(a)-f(a-h)}{h}\right) \\
& =f^{\prime}(a) .
\end{aligned}
$$

14. P231. \# 28.16

Proof. " \Rightarrow ". We define

$$
\epsilon(x)= \begin{cases}\frac{f(x)-f(a)}{x-a}-f^{\prime}(a), & \text { for } x \neq a, \\ 0, & \text { for } x=a .\end{cases}
$$

Then

$$
f(x)-f(a)=(x-a)\left(f^{\prime}(a)-\epsilon(x)\right) .
$$

and since f is differentiable at a,

$$
\lim _{x \rightarrow a} \epsilon(x)=0 .
$$

$" \Leftarrow$ " For $x \neq a$,

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a}\left(f^{\prime}(a)-\epsilon(x)\right)=f^{\prime}(a) .
$$

So f is differentiable at a and its derivative is $f^{\prime}(a)$.

