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Abstract. Please send me an email if you find mistakes. Thanks.

1. P239. # 29.1

Proof. (a).The mean value theorem holds because x2 is continuous on [−1, 2]
and is differentiable on (−1, 2). Let f(x) = x2. Then

f(b)− f(a) = 22 − (−1)2 = 3, b− a = 2− (−1) = 3.

Then since f ′(x) = 2x, c can be taken as

c =
1

2
.

Then

f(b)− f(a) = f ′(c)(b− a).

(c). The mean value theorem does not apply in this case because |x| is
not differentiable at 0.

(e). The mean value theorem holds because 1
x is continuous on [1, 3] and

is differentiable on (1, 3). Let f(x) = 1
x . Then

f(b)− f(a) =
1

3
− 1 = −2

3
, b− a = 3− 1 = 2.

Then since f ′(x) = − 1
x2 , c can be taken as

c =
1√
3
.

Then

f(b)− f(a) = f ′(c)(b− a).
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2. P239. # 29.2

Proof. We know that cos′ x = − sinx and | sinx| ≤ 1 for all x ∈ R. Then
for x, y ∈ R, there exists c ∈ R such that

cosx− cos y = − sin c(x− y).

Then

|cosx− cos y| = | sin c||x− y| ≤ |x− y|.

This proves the claim. �

3. P239. # 29.3

Proof. (a). By the mean value theorem, there exists x ∈ (0, 2) such that

f(2)− f(0) = f ′(x)(2− 0).

So

f ′(x) =
1

2
.

(b). For this one, we will have to invoke Theorem 29.8, the intermediate
value theorem for derivatives. So we skip the proof. �

4. P239. #29.4

Proof. We follow the hint. For h(x) = f(x)eg(x), h is continuous on [a, b]
and is differentiable on (a, b). Moreover,

h(a) = h(b) = 0.

By the mean value theorem, there exists x ∈ (a, b) such that

h′(x) = 0.

That is to say

h′(x) = f ′(x)eg(x) + f(x)eg(x)g′(x) =
(
f ′(x) + f(x)g′(x)

)
eg(x) = 0.

Since eg(x) 6= 0 for all x, we obtain

f ′(x) + f(x)g′(x) = 0.

This proves the claim. �
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5. P239. # 29.7

Proof. (a).Since f ′′ = (f ′)′ and f ′′ ≡ 0,

f ′ = a

for some constant a ∈ R. We rewrite it,

(f(x)− ax)′ = 0.

Then
f(x)− ax = b, i.e., f(x) = ax+ b.

for some constant b ∈ R.

(b). By part (a),
f ′(x) = ax+ b.

That is to say, (
f(x)− a

2
x2 − bx

)′
= 0.

Then
f(x)− a

2
x2 − bx = c

for some constant c. Then

f(x) =
a

2
x2 + bx+ c.
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6. P240. # 29.9

Proof. This is obviously true for x ≤ 0. We consider f(x) = ex−x on [0,∞)
Then

f ′(x) = ex − 1 ≥ 0.

This holds for x ≥ 0. So f is increasing on [0,∞):

f(x) ≥ f(0) = 1 ≥ 0.

Then ex ≥ x. �

7. P240. # 29.11

Proof. Consider f(x) = x − sinx. Then f ′(x) = 1 − cosx ≥ 0 for all x. So
f is increasing on [0,∞).

f(x) ≥ f(0) = 0.

So
x ≥ sinx.
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8. P240. # 29.18

Proof. (a).By mean value theorem,

sn+1 − sn = f(sn)− f(sn−1) = f ′(c)(sn − sn−1).
Then

|sn+1 − sn| = |f ′(c)(sn − sn−1)| ≤ a|sn − sn−1|.
Therefore,

|sn+1 − sn| ≤ an|s1 − s0|.
So for m > n,

|sm − sn| ≤ |sm − sm−1|+ a|sm−1 − sm−2|+ · · ·+ |sn+1 − sn|
≤ (am−1 + am−2 + · · ·+ an)|s1 − s0|

≤ an − am

1− a
|s1 − s0|

= an
1

1− a
|s1 − s0|.

We assume that |s1 − s0| 6= 0. Since limn→∞ a
n = 0, for any ε > 0, there

exists N ∈ N such that for n ≥ N ,

|an| ≤ (1− a)ε

|s1 − s0|
.

So
|sm − sn| < ε.

This proves that {sn} is Cauchy. Hence sn is a convergent sequence. This
proves (a).

(b). Let s = limn→∞ sn. We take n→∞ in sn = f(sn−1). Then because
f is differentiable and so continuous on R, we obtain

s = f(s).
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