HOMEWORK 7

SHUANGLIN SHAO

Abstract. Please send me an email if you find mistakes. Thanks.

1. P239. \# 29.1

Proof. (a).The mean value theorem holds because x^{2} is continuous on $[-1,2]$ and is differentiable on $(-1,2)$. Let $f(x)=x^{2}$. Then

$$
f(b)-f(a)=2^{2}-(-1)^{2}=3, b-a=2-(-1)=3 .
$$

Then since $f^{\prime}(x)=2 x, c$ can be taken as

$$
c=\frac{1}{2} .
$$

Then

$$
f(b)-f(a)=f^{\prime}(c)(b-a) .
$$

(c). The mean value theorem does not apply in this case because $|x|$ is not differentiable at 0 .
(e). The mean value theorem holds because $\frac{1}{x}$ is continuous on $[1,3]$ and is differentiable on $(1,3)$. Let $f(x)=\frac{1}{x}$. Then

$$
f(b)-f(a)=\frac{1}{3}-1=-\frac{2}{3}, b-a=3-1=2 .
$$

Then since $f^{\prime}(x)=-\frac{1}{x^{2}}, c$ can be taken as

$$
c=\frac{1}{\sqrt{3}} .
$$

Then

$$
f(b)-f(a)=f^{\prime}(c)(b-a) .
$$

Proof. We know that $\cos ^{\prime} x=-\sin x$ and $|\sin x| \leq 1$ for all $x \in \mathbb{R}$. Then for $x, y \in \mathbb{R}$, there exists $c \in \mathbb{R}$ such that

$$
\cos x-\cos y=-\sin c(x-y)
$$

Then

$$
|\cos x-\cos y|=|\sin c||x-y| \leq|x-y| .
$$

This proves the claim.

3. P239. \# 29.3

Proof. (a). By the mean value theorem, there exists $x \in(0,2)$ such that

$$
f(2)-f(0)=f^{\prime}(x)(2-0) .
$$

So

$$
f^{\prime}(x)=\frac{1}{2} .
$$

(b). For this one, we will have to invoke Theorem 29.8, the intermediate value theorem for derivatives. So we skip the proof.
4. P239. \#29.4

Proof. We follow the hint. For $h(x)=f(x) e^{g(x)}, h$ is continuous on $[a, b]$ and is differentiable on (a, b). Moreover,

$$
h(a)=h(b)=0 .
$$

By the mean value theorem, there exists $x \in(a, b)$ such that

$$
h^{\prime}(x)=0 .
$$

That is to say

$$
h^{\prime}(x)=f^{\prime}(x) e^{g(x)}+f(x) e^{g(x)} g^{\prime}(x)=\left(f^{\prime}(x)+f(x) g^{\prime}(x)\right) e^{g(x)}=0 .
$$

Since $e^{g(x)} \neq 0$ for all x, we obtain

$$
f^{\prime}(x)+f(x) g^{\prime}(x)=0 .
$$

This proves the claim.

$$
\text { 5. P239. \# } 29.7
$$

Proof. (a).Since $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$ and $f^{\prime \prime} \equiv 0$,

$$
f^{\prime}=a
$$

for some constant $a \in \mathbb{R}$. We rewrite it,

$$
(f(x)-a x)^{\prime}=0 .
$$

Then

$$
f(x)-a x=b, \text { i.e., } f(x)=a x+b .
$$

for some constant $b \in \mathbb{R}$.
(b). By part (a),

$$
f^{\prime}(x)=a x+b .
$$

That is to say,

$$
\left(f(x)-\frac{a}{2} x^{2}-b x\right)^{\prime}=0 .
$$

Then

$$
f(x)-\frac{a}{2} x^{2}-b x=c
$$

for some constant c. Then

$$
f(x)=\frac{a}{2} x^{2}+b x+c .
$$

6. P240. \# 29.9

Proof. This is obviously true for $x \leq 0$. We consider $f(x)=e^{x}-x$ on $[0, \infty)$ Then

$$
f^{\prime}(x)=e^{x}-1 \geq 0 .
$$

This holds for $x \geq 0$. So f is increasing on $[0, \infty)$:

$$
f(x) \geq f(0)=1 \geq 0 .
$$

Then $e^{x} \geq x$.

7. P240. \# 29.11

Proof. Consider $f(x)=x-\sin x$. Then $f^{\prime}(x)=1-\cos x \geq 0$ for all x. So f is increasing on $[0, \infty)$.

$$
f(x) \geq f(0)=0
$$

So

$$
x \geq \sin x
$$

8. P240. \# 29.18

Proof. (a).By mean value theorem,

$$
s_{n+1}-s_{n}=f\left(s_{n}\right)-f\left(s_{n-1}\right)=f^{\prime}(c)\left(s_{n}-s_{n-1}\right) .
$$

Then

$$
\left|s_{n+1}-s_{n}\right|=\left|f^{\prime}(c)\left(s_{n}-s_{n-1}\right)\right| \leq a\left|s_{n}-s_{n-1}\right| .
$$

Therefore,

$$
\left|s_{n+1}-s_{n}\right| \leq a^{n}\left|s_{1}-s_{0}\right| .
$$

So for $m>n$,

$$
\begin{aligned}
\left|s_{m}-s_{n}\right| & \leq\left|s_{m}-s_{m-1}\right|+a\left|s_{m-1}-s_{m-2}\right|+\cdots+\left|s_{n+1}-s_{n}\right| \\
& \leq\left(a^{m-1}+a^{m-2}+\cdots+a^{n}\right)\left|s_{1}-s_{0}\right| \\
& \leq \frac{a^{n}-a^{m}}{1-a}\left|s_{1}-s_{0}\right| \\
& =a^{n} \frac{1}{1-a}\left|s_{1}-s_{0}\right| .
\end{aligned}
$$

We assume that $\left|s_{1}-s_{0}\right| \neq 0$. Since $\lim _{n \rightarrow \infty} a^{n}=0$, for any $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for $n \geq N$,

$$
\left|a^{n}\right| \leq \frac{(1-a) \epsilon}{\left|s_{1}-s_{0}\right|}
$$

So

$$
\left|s_{m}-s_{n}\right|<\epsilon .
$$

This proves that $\left\{s_{n}\right\}$ is Cauchy. Hence s_{n} is a convergent sequence. This proves (a).
(b). Let $s=\lim _{n \rightarrow \infty} s_{n}$. We take $n \rightarrow \infty$ in $s_{n}=f\left(s_{n-1}\right)$. Then because f is differentiable and so continuous on \mathbb{R}, we obtain

$$
s=f(s)
$$

Department of Mathematics, KU, Lawrence, KS 66045
E-mail address: slshao@math.ku.edu

