HOMEWORK 8

SHUANGLIN SHAO

Abstract. Please send me an email if you find mistakes. Thanks.

1. P279. \# 32.1

Proof. Given a partition of $[a, b]: a+t_{0}<t_{1}<\cdots<t_{n}$. Since $f(x)=x^{3}$ is increasing on $\left[t_{k_{1}}, t_{k}\right]$. Then

$$
M\left(f,\left[t_{k-1}, t_{k}\right]\right)=t_{k}^{3}, m\left(f,\left[t_{k-1}, t_{k}\right]\right)=t_{k-1}
$$

Then the upper and lower Darboux sums,

$$
U(f, p)=\sum_{k=1}^{n} M\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right)=\sum_{k=1}^{n} t_{k}^{3}\left(t_{k}-t_{k-1}\right),
$$

and

$$
L(f, P)=\sum_{k=1}^{n} m\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right)=\sum_{k=1}^{n} t_{k-1}^{3}\left(t_{k}-t_{k-1}\right) .
$$

We take $t_{k}=\frac{k b}{n}$ for $1 \leq k \leq n$. Then

$$
\begin{aligned}
U(f, P) & =\sum_{k=1}^{n} \frac{k^{3} b^{3}}{n^{3}} \frac{b}{n}=\frac{b^{4}}{n^{4}} \sum_{k=1}^{n} k^{3} \\
& =\frac{b^{4}}{n^{4}}(1+2+\cdots+n)^{2}=\frac{b^{4}}{n^{4}} \frac{n^{2}(n+1)^{2}}{4} \\
& =\frac{(n+1)^{2} b^{4}}{4 n^{2}} .
\end{aligned}
$$

By the definition of upper integrals,

$$
U(f) \leq \frac{(n+1)^{2} b^{4}}{4 n^{2}}
$$

Let $n \rightarrow \infty$,

$$
U(f) \leq \frac{b^{4}}{4}
$$

Similarly we compute that

$$
L(f) \geq \frac{(n-1)^{2} b^{4}}{4 n^{2}}
$$

Let $n \rightarrow \infty$,

$$
L(f) \geq \frac{b^{4}}{4} .
$$

Since $L(f) \leq U(f)$, we obtain

$$
L(f)=U(f)=\frac{b^{4}}{4} .
$$

2. P279. \# 32.2

Proof. (a).By the same reasoning as in Example 2, for any partition $P=$ $\left\{t_{0}=0<t_{1}<\cdots<t_{n}=b\right\}$,

$$
L(f, P)=0, \text { and } L(f)=0 .
$$

We compute the upper Darboux sum,

$$
U(f, P)=\sum_{k=1}^{n} M\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right) .
$$

For $\left\{t_{k}\right\}$ rational numbers, $M\left(f,\left[t_{k-1}, t_{k}\right]\right)=t_{k}$ and so

$$
U(f, P)=\sum_{k=1}^{n} t_{k}\left(t_{k}-t_{k-1}\right) .
$$

For $\left\{t_{k}\right\}$ irrational numbers, $M\left(f,\left[t_{k-1}, t_{k}\right]\right)=t_{k}$ and so

$$
U(f, P)=\sum_{k=1}^{n} t_{k}\left(t_{k}-t_{k-1}\right)
$$

We take $t_{k}=\frac{k b}{n}$. Then

$$
U(f, P)=\sum_{k=1}^{n} \frac{k b^{2}}{n^{2}}=\frac{n(n+1)}{2 n^{2}} b^{2}=\frac{n+1}{2 n} b^{2} .
$$

So

$$
U(f)=\inf \{U(f, P): P \text { is a partition }\} \leq \frac{n+1}{2 n} b^{2}, \text { for all } n .
$$

Then

$$
U(f) \leq \frac{b^{2}}{2}
$$

(b).

$$
\text { 3. P279. \# } 32.3
$$

Proof. The proof is similar as in Exercise 32.2.

$$
\text { 4. P279. \# } 32.4
$$

Proof. Suppose $Q \subset P$ and $Q \neq P$. We further assume that $Q=P \cup$ $\left\{y_{1}, \cdots, y_{m}\right\}$. We do the induction on m. When $m=1$, this is the argument in the proof of Lemma 32.2. Suppose that $m=k$, the conclusion holds. When $m=k+1, Q$ contains one more point than $P \cup\left\{y_{1}, \cdots, y_{k}\right\}$ for some $y_{1}, \cdots, y_{k} i n \mathbb{R}$. This argument is similar to that when Q contains one more point than P.
5. P279. \# 32.6

Proof. By the definition of the upper and lower integrals,

$$
U(f) \leq U_{n}, L(f) \geq L_{n}
$$

for any n. Then

$$
0 \leq U(f)-L(f) \leq U_{n}-L_{n} .
$$

By the squeezing theorem,

$$
U(f)=L(f),
$$

So f is integrable.
Since $L_{n} \leq \int_{a}^{b} f \leq U_{n}$, then

$$
0 \leq U_{n}-\int_{a}^{b} f \leq U_{n}-L_{n}
$$

By the squeezing theorem again,

$$
\lim _{n \rightarrow \infty} U_{n}-\int_{a}^{b} f=0
$$

That is to say,

$$
\lim _{n \rightarrow \infty} U_{n}=\int_{a}^{b} f .
$$

Similarly,

$$
\lim _{n \rightarrow \infty} L_{n}=\int_{a}^{b} f .
$$

Department of Mathematics, KU, Lawrence, KS 66045
E-mail address: slshao@math.ku.edu

