HOMEWORK 9

SHUANGLIN SHAO

ABSTRACT. Please send me an email if you find mistakes. Thanks.

1. P289. # 33.1

Proof. The proof is similar to Theorem 33.1. So we skip it. U

2. P289. # 33.2

Proof. We show that sup{cS} = ¢sup S for ¢ > 0. The proof for infimum is
similar. Firstly for s € .S,
cs < csup S.

So csup S is an upper bound. For € > 0, there exists sg € S such that
so >sup S —¢€/c.
So
csg > csup S — e.
This proves that ssup S is the least one among the upper bounds. Therefore

csup S = sup(cS).

([l
3. P289. # 33.4
Proof.
= 1, for xrationalnumbersin|0, 1],
| -1, for zirrationalnumbersin|0,1].
One can compute the lower integral L(f) = —1 and U(f) = 1 as in the
book. So f is not integrable. However,

|f =1
is a constant function on [0, 1] and so is integrable. O
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4. P289. # 33.5

Proof. Here we use
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5. P289. # 33.7

Proof. (a). For any partitionP = {tg = a < t; <ty < --- < t, = b} and
any € > 0, there exist zy, yx such that

M(f?, [th-1,te]) — € < f2(xx)
and
F2yk) < m(f2 [te—1, t)) + €.
Then
M(f?, [tr—1, te])=m(f, [te—1, tr)) < 2 (@)= F(yr)+2¢ = (f (z)+f () (f (@r) = f (yx) ) +2€.
Then
’M(f2v [tk’—b tk’]) - m(f27 [tk’—b tk’])‘
<|(f(wg) + fur)| | f(wr) — flyr)| + 2¢
<2B|f(xr) — f(yr)| + 26 < 2B (M(f, [tk—1,tk]) — m(f, [tk—1,tx])) + 2e.
Therefore
M(f?, [th—1, te])=m(f?, [te—1, tr)) < 2B (M(f, [tr—1,t]) — m(f, [th—1, tx]))+2€.
Since € > 0 is arbitrary,
M(f2, [th-1.te)) — m(f2, [tr—1, te]) < 2B (M(f, [te—1, tr]) — m(f, [tr—1, te])) -
This implies
U(f? P)— L(f*,P) <2B(U(f,P)— L(f,P)).

(b). f is integrable on [a, b]: for any € > 0, there exists P of [a, b] such that

So
U(f? P) — L(f* P) <.
This proves that f2 is integrable on [a, b]. O
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