HOMEWORK 9

SHUANGLIN SHAO

ABSTRACT. Please send me an email if you find mistakes. Thanks.

1. P289. # 33.1

Proof. The proof is similar to Theorem 33.1. So we skip it.

2. P289. # 33.2

Proof. We show that $\sup\{cS\} = c \sup S$ for c > 0. The proof for infimum is similar. Firstly for $s \in S$,

 $cs \leq c \sup S.$ So $c \sup S$ is an upper bound. For $\epsilon > 0$, there exists $s_0 \in S$ such that $s_0 \geq \sup S - \epsilon/c.$

 So

 $cs_0 \ge c \sup S - \epsilon.$

This proves that $s \sup S$ is the least one among the upper bounds. Therefore $c \sup S = \sup(cS)$.

Proof.

$$f = \begin{cases} 1, & \text{for } xrationalnumbersin[0,1], \\ -1, & \text{for } xirrationalnumbersin[0,1]. \end{cases}$$

One can compute the lower integral L(f) = -1 and U(f) = 1 as in the book. So f is not integrable. However,

$$|f| = 1$$

1

is a constant function on [0, 1] and so is integrable.

4. P289. # 33.5

Proof. Here we use

$$\left| \int_{-2\pi}^{2\pi} x^2 \sin^8(e^x) dx \right| \le \int_{-2\pi}^{2\pi} \left| x^2 \sin^8(e^x) \right| dx \le \int_{-2\pi}^{2\pi} x^2 dx = \frac{16\pi^3}{3}.$$

5. P289. # 33.7

Proof. (a). For any partition $P = \{t_0 = a < t_1 < t_2 < \cdots < t_n = b\}$ and any $\epsilon > 0$, there exist x_k, y_k such that

$$M(f^2, [t_{k-1}, t_k]) - \epsilon < f^2(x_k)$$

and

$$f^{2}(y_{k}) \leq m(f^{2}, [t_{k-1}, t_{k}]) + \epsilon.$$

Then

 $M(f^2, [t_{k-1}, t_k]) - m(f^2, [t_{k-1}, t_k]) \le f^2(x_k) - f^2(y_k) + 2\epsilon = (f(x_k) + f(y_k))(f(x_k) - f(y_k)) + 2\epsilon.$ Then

$$\begin{aligned} & \left| M(f^2, [t_{k-1}, t_k]) - m(f^2, [t_{k-1}, t_k]) \right| \\ & \leq \left| (f(x_k) + f(y_k) \right| \left| f(x_k) - f(y_k) \right| + 2\epsilon \\ & \leq 2B |f(x_k) - f(y_k)| + 2\epsilon \leq 2B \left(M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k]) \right) + 2\epsilon. \end{aligned}$$

Therefore

$$\begin{split} &M(f^2, [t_{k-1}, t_k]) - m(f^2, [t_{k-1}, t_k]) \leq 2B \left(M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k]) \right) + 2\epsilon. \\ &\text{Since } \epsilon > 0 \text{ is arbitrary,} \\ &M(f^2, [t_{k-1}, t_k]) - m(f^2, [t_{k-1}, t_k]) \leq 2B \left(M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k]) \right). \\ &\text{This implies} \end{split}$$

$$U(f^2, P) - L(f^2, P) \le 2B (U(f, P) - L(f, P)).$$

(b). f is integrable on [a, b]: for any $\epsilon > 0$, there exists P of [a, b] such that $U(f, P) - L(f, P) < \epsilon/2B.$

 So

 $U(f^2,P) - L(f^2,P) < \epsilon.$ This proves that f^2 is integrable on [a,b].

Department of Mathematics, KU, Lawrence, KS 66045

 $E\text{-}mail \ address: \texttt{slshaoQmath.ku.edu}$