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Abstract. Please send me an email if you find mistakes. Thanks.

1. P289. # 33.1

Proof. The proof is similar to Theorem 33.1. So we skip it. �

2. P289. # 33.2

Proof. We show that sup{cS} = c supS for c > 0. The proof for infimum is
similar. Firstly for s ∈ S,

cs ≤ c supS.

So c supS is an upper bound. For ε > 0, there exists s0 ∈ S such that

s0 ≥ supS − ε/c.
So

cs0 ≥ c supS − ε.
This proves that s supS is the least one among the upper bounds. Therefore

c supS = sup(cS).

�

3. P289. # 33.4

Proof.

f =

{
1, for xrationalnumbersin[0, 1],

−1, for xirrationalnumbersin[0, 1].

One can compute the lower integral L(f) = −1 and U(f) = 1 as in the
book. So f is not integrable. However,

|f = 1|
is a constant function on [0, 1] and so is integrable. �
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4. P289. # 33.5

Proof. Here we use∣∣∣∣∫ 2π

−2π
x2 sin8(ex)dx

∣∣∣∣ ≤ ∫ 2π

−2π

∣∣x2 sin8(ex)
∣∣ dx ≤ ∫ 2π

−2π
x2dx =

16π3

3
.

�

5. P289. # 33.7

Proof. (a). For any partitionP = {t0 = a < t1 < t2 < · · · < tn = b} and
any ε > 0, there exist xk, yk such that

M(f2, [tk−1, tk])− ε < f2(xk)

and
f2(yk) ≤ m(f2, [tk−1, tk]) + ε.

Then

M(f2, [tk−1, tk])−m(f2, [tk−1, tk]) ≤ f2(xk)−f2(yk)+2ε = (f(xk)+f(yk))(f(xk)−f(yk))+2ε.

Then∣∣M(f2, [tk−1, tk])−m(f2, [tk−1, tk])
∣∣

≤ |(f(xk) + f(yk)| |f(xk)− f(yk)|+ 2ε

≤ 2B|f(xk)− f(yk)|+ 2ε ≤ 2B (M(f, [tk−1, tk])−m(f, [tk−1, tk])) + 2ε.

Therefore

M(f2, [tk−1, tk])−m(f2, [tk−1, tk]) ≤ 2B (M(f, [tk−1, tk])−m(f, [tk−1, tk]))+2ε.

Since ε > 0 is arbitrary,

M(f2, [tk−1, tk])−m(f2, [tk−1, tk]) ≤ 2B (M(f, [tk−1, tk])−m(f, [tk−1, tk])) .

This implies

U(f2, P )− L(f2, P ) ≤ 2B (U(f, P )− L(f, P )) .

(b). f is integrable on [a, b]: for any ε > 0, there exists P of [a, b] such that

U(f, P )− L(f, P ) < ε/2B.

So
U(f2, P )− L(f2, P ) < ε.

This proves that f2 is integrable on [a, b]. �

Department of Mathematics, KU, Lawrence, KS 66045

E-mail address: slshao@math.ku.edu

2


