HOMEWORK 9

SHUANGLIN SHAO

Abstract. Please send me an email if you find mistakes. Thanks.

1. P289. \# 33.1

Proof. The proof is similar to Theorem 33.1. So we skip it.
2. P289. \# 33.2

Proof. We show that $\sup \{c S\}=c \sup S$ for $c>0$. The proof for infimum is similar. Firstly for $s \in S$,

$$
c s \leq c \sup S
$$

So $c \sup S$ is an upper bound. For $\epsilon>0$, there exists $s_{0} \in S$ such that

$$
s_{0} \geq \sup S-\epsilon / c
$$

So

$$
c s_{0} \geq c \sup S-\epsilon
$$

This proves that $s \sup S$ is the least one among the upper bounds. Therefore

$$
c \sup S=\sup (c S)
$$

3. P289. \# 33.4

Proof.

$$
f= \begin{cases}1, & \text { for xrationalnumbersin }[0,1] \\ -1, & \text { for xirrationalnumbersin }[0,1]\end{cases}
$$

One can compute the lower integral $L(f)=-1$ and $U(f)=1$ as in the book. So f is not integrable. However,

$$
|f=1|
$$

is a constant function on $[0,1]$ and so is integrable.
4. P289. \# 33.5

Proof. Here we use

$$
\left|\int_{-2 \pi}^{2 \pi} x^{2} \sin ^{8}\left(e^{x}\right) d x\right| \leq \int_{-2 \pi}^{2 \pi}\left|x^{2} \sin ^{8}\left(e^{x}\right)\right| d x \leq \int_{-2 \pi}^{2 \pi} x^{2} d x=\frac{16 \pi^{3}}{3} .
$$

5. P289. \# 33.7

Proof. (a). For any partition $P=\left\{t_{0}=a<t_{1}<t_{2}<\cdots<t_{n}=b\right\}$ and any $\epsilon>0$, there exist x_{k}, y_{k} such that

$$
M\left(f^{2},\left[t_{k-1}, t_{k}\right]\right)-\epsilon<f^{2}\left(x_{k}\right)
$$

and

$$
f^{2}\left(y_{k}\right) \leq m\left(f^{2},\left[t_{k-1}, t_{k}\right]\right)+\epsilon .
$$

Then
$M\left(f^{2},\left[t_{k-1}, t_{k}\right]\right)-m\left(f^{2},\left[t_{k-1}, t_{k}\right]\right) \leq f^{2}\left(x_{k}\right)-f^{2}\left(y_{k}\right)+2 \epsilon=\left(f\left(x_{k}\right)+f\left(y_{k}\right)\right)\left(f\left(x_{k}\right)-f\left(y_{k}\right)\right)+2 \epsilon$.
Then

$$
\begin{aligned}
& \left|M\left(f^{2},\left[t_{k-1}, t_{k}\right]\right)-m\left(f^{2},\left[t_{k-1}, t_{k}\right]\right)\right| \\
& \leq \mid\left(f\left(x_{k}\right)+f\left(y_{k}\right)| | f\left(x_{k}\right)-f\left(y_{k}\right) \mid+2 \epsilon\right. \\
& \leq 2 B\left|f\left(x_{k}\right)-f\left(y_{k}\right)\right|+2 \epsilon \leq 2 B\left(M\left(f,\left[t_{k-1}, t_{k}\right]\right)-m\left(f,\left[t_{k-1}, t_{k}\right]\right)\right)+2 \epsilon .
\end{aligned}
$$

Therefore
$M\left(f^{2},\left[t_{k-1}, t_{k}\right]\right)-m\left(f^{2},\left[t_{k-1}, t_{k}\right]\right) \leq 2 B\left(M\left(f,\left[t_{k-1}, t_{k}\right]\right)-m\left(f,\left[t_{k-1}, t_{k}\right]\right)\right)+2 \epsilon$.
Since $\epsilon>0$ is arbitrary,
$M\left(f^{2},\left[t_{k-1}, t_{k}\right]\right)-m\left(f^{2},\left[t_{k-1}, t_{k}\right]\right) \leq 2 B\left(M\left(f,\left[t_{k-1}, t_{k}\right]\right)-m\left(f,\left[t_{k-1}, t_{k}\right]\right)\right)$.
This implies

$$
U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq 2 B(U(f, P)-L(f, P)) .
$$

(b). f is integrable on $[a, b]$: for any $\epsilon>0$, there exists P of $[a, b]$ such that

$$
U(f, P)-L(f, P)<\epsilon / 2 B .
$$

So

$$
U\left(f^{2}, P\right)-L\left(f^{2}, P\right)<\epsilon .
$$

This proves that f^{2} is integrable on $[a, b]$.

Department of Mathematics, KU, Lawrence, KS 66045

E-mail address: slshao@math.ku.edu

