Math 800 Final Exam Spring 2017

Note: These 10 problems are taken from the complex analysis part of UCLA qualifying exams in Analysis for fall 2016 and spring 2016 at *https://secure.math.ucla.edu/gradquals/hbquals.php*. Due by Wednesday, May 3rd in class.

1) Determine

$$\int_0^\infty \frac{x^{a-1}}{x+z} dx$$

for 0 < a < 1 and $\operatorname{Re} z > 0$. Justify all manipulations.

2) Let $\mathbf{C}_+ = \{z \in \mathbf{C} : \text{Im } z > 0\}$ and let $f_n : \mathbf{C}_+ \to \mathbf{C}_+$ be a sequence of holomorphic functions. Show that unless $|f_n| \to \infty$ uniformly on compact subsets of \mathbf{C}_+ , there exists a subsequence converging uniformly on compact subsets of \mathbf{C}_+ .

3)Let $f : \mathbf{C} \to \mathbf{C}$ be entire and assume that |f(z)| = 1 when |z| = 1. Show that f is in the following form,

$$f(z) = Cz^m$$

for some integer m > 0 and $C \in \mathbf{C}$ with |C| = 1.

4) Does there exist a function f(z) holomorphic in the disk |z| < 1 such that $\lim_{|z|\to 1} |f(z)| = \infty$? Either find one or prove that none exist.

5) Assume that f(z) is holomorphic on |z| < 2. Show that

$$\max_{|z|=1} \left| f(z) - \frac{1}{z} \right| \ge 1.$$

6)

- (a). Find a real-valued harmonic function v defined on the disk |z| < 1 such that v(z) > 0 and $\lim_{z\to 1} v(z) = \infty$.
- (b). Let u be a real-valued harmonic function in the disk |z| < 1 such that $u(z) \leq M < \infty$ and $\limsup_{r \to 1} u(re^{i\theta}) \leq 0$ for all $\theta \in (0, 2\pi)$. Show that $u(z) \leq 0$. The function in part (a) is useful here.
- 7) Let \mathcal{H} be the space of holomorphic functions f in $D = \{z \in \mathbb{C} : |z| < 1\}$ such that

$$\int_D |f(z)|^2 dA(z) < \infty,$$

where the integration is with respect to the Lebesgue measure A on D. The vector space \mathcal{H} is a Hilbert space if equipped with the inner product

$$\langle f,g\rangle = \int_D f(z)\overline{g}(z)dA(z)$$

for $f, g \in \mathcal{H}$. Fix $z_0 \in D$ and define $L_{z_0}(f) = f(z_0)$ for $f \in \mathcal{H}$.

(a). Show that L_{z_0} is a bounded linear functional on \mathcal{H} .

(b). Find an explicit $g_{z_0} \in \mathcal{H}$ such that

$$L_{z_0}(f) = \langle f, g_{z_0} \rangle$$

for all $f \in \mathcal{H}$.

8) Let f be a continuous complex-valued function on the closed unit disk $\overline{D} = \{z \in \mathbb{C} : |z| \le 1\}$ such that f is holomorphic in the open disk $D = \{z \in \mathbb{C} : |z| < 1\}$ and $f(0) \ne 0$. Show that

(a). Let 0 < r < 1 and $\inf_{|z|=r} |f(z)| > 0$. Then

$$\frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\theta})| d\theta \ge \log |f(0)|.$$

- (b). The measure $|\{\theta \in [0, 2\pi] : f(e^{i\theta}) = 0\}| = 0$, where |E| denotes the Lebesuge measure of $E \subset [0, 2\pi]$.
- 9) Let μ be a positive Borel measure on [0, 1] with $\mu([0, 1]) = 1$.
- (a). Show that the function f(z) defined as

$$f(z) = \int_{[0,1]} e^{izt} d\mu(t)$$

for $z \in \mathbf{C}$ is holomorphic on \mathbf{C} .

(b). Suppose that there exists $n \in \mathbb{N}$ such that

$$\limsup_{|z|\to\infty}\frac{|f(z)|}{|z|^n}<\infty.$$

Show that μ equals the Dirac measure δ_0 at 0.

9) Show that $f: \mathbf{C} \to \mathbf{C}$ is holomorphic function such that the function

$$z \mapsto g(z) = f(z)f(1/z)$$

is bounded on $\mathbf{C} \setminus \{0\}$.

- (a). Show that if $f(0) \neq 0$, then f is a constant.
- (b). Show that if f(0) = 0, then there exists $a \in \mathbf{C}$ and $n \in \mathbf{N}$ such that $f(z) = az^n$ for all $z \in \mathbf{C}$.