Math 800 Final Exam

Spring 2017
Note: These 10 problems are taken from the complex analysis part of UCLA qualifying exams in Analysis for fall 2016 and spring 2016 at https://secure.math.ucla.edu/gradquals/hbquals.php. Due by Wednesday, May 3rd in class.

1) Determine

$$
\int_{0}^{\infty} \frac{x^{a-1}}{x+z} d x
$$

for $0<a<1$ and $\operatorname{Re} z>0$. Justify all manipulations.
2) Let $\mathbf{C}_{+}=\{z \in \mathbf{C}: \operatorname{Im} z>0\}$ and let $f_{n}: \mathbf{C}_{+} \rightarrow \mathbf{C}_{+}$be a sequence of holomorphic functions. Show that unless $\left|f_{n}\right| \rightarrow \infty$ uniformly on compact subsets of \mathbf{C}_{+}, there exists a subsequence converging uniformly on compact subsets of \mathbf{C}_{+}.
3)Let $f: \mathbf{C} \rightarrow \mathbf{C}$ be entire and assume that $|f(z)|=1$ when $|z|=1$. Show that f is in the following form,

$$
f(z)=C z^{m}
$$

for some integer $m>0$ and $C \in \mathbf{C}$ with $|C|=1$.
4) Does there exist a function $f(z)$ holomorphic in the disk $|z|<1$ such that $\lim _{|z| \rightarrow 1}|f(z)|=\infty$? Either find one or prove that none exist.
5) Assume that $f(z)$ is holomorphic on $|z|<2$. Show that

$$
\max _{|z|=1}\left|f(z)-\frac{1}{z}\right| \geq 1 .
$$

6)

(a). Find a real-valued harmonic function v defined on the disk $|z|<1$ such that $v(z)>0$ and $\lim _{z \rightarrow 1} v(z)=\infty$.
(b). Let u be a real-valued harmonic function in the disk $|z|<1$ such that $u(z) \leq M<\infty$ and $\lim \sup _{r \rightarrow 1} u\left(r e^{i \theta}\right) \leq 0$ for all $\theta \in(0,2 \pi)$. Show that $u(z) \leq 0$. The function in part (a) is useful here.
7) Let \mathcal{H} be the space of holomorphic functions f in $D=\{z \in \mathbf{C}:|z|<1\}$ such that

$$
\int_{D}|f(z)|^{2} d A(z)<\infty
$$

where the integration is with respect to the Lebesgue measure A on D. The vector space \mathcal{H} is a Hilbert space if equipped with the inner product

$$
\langle f, g\rangle=\int_{D} f(z) \bar{g}(z) d A(z)
$$

for $f, g \in \mathcal{H}$. Fix $z_{0} \in D$ and define $L_{z_{0}}(f)=f\left(z_{0}\right)$ for $f \in \mathcal{H}$.
(a). Show that $L_{z_{0}}$ is a bounded linear functional on \mathcal{H}.
(b). Find an explicit $g_{z_{0}} \in \mathcal{H}$ such that

$$
L_{z_{0}}(f)=\left\langle f, g_{z_{0}}\right\rangle
$$

for all $f \in \mathcal{H}$.
8) Let f be a continuous complex-valued function on the closed unit disk $\bar{D}=\{z \in \mathbf{C}:|z| \leq 1\}$ such that f is holomorphic in the open disk $D=\{z \in \mathbf{C}:|z|<1\}$ and $f(0) \neq 0$. Show that
(a). Let $0<r<1$ and $\inf _{|z|=r}|f(z)|>0$. Then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta \geq \log |f(0)|
$$

(b). The measure $\left|\left\{\theta \in[0,2 \pi]: f\left(e^{i \theta}\right)=0\right\}\right|=0$, where $|E|$ denotes the Lebesuge measure of $E \subset[0,2 \pi]$.
9) Let μ be a positive Borel measure on $[0,1]$ with $\mu([0,1])=1$.
(a). Show that the function $f(z)$ defined as

$$
f(z)=\int_{[0,1]} e^{i z t} d \mu(t)
$$

for $z \in \mathbf{C}$ is holomorphic on \mathbf{C}.
(b). Suppose that there exists $n \in \mathbb{N}$ such that

$$
\limsup _{|z| \rightarrow \infty} \frac{|f(z)|}{|z|^{n}}<\infty
$$

Show that μ equals the Dirac measure δ_{0} at 0 .
9) Show that $f: \mathbf{C} \rightarrow \mathbf{C}$ is holomorphic function such that the function

$$
z \mapsto g(z)=f(z) f(1 / z)
$$

is bounded on $\mathbf{C} \backslash\{0\}$.
(a). Show that if $f(0) \neq 0$, then f is a constant.
(b). Show that if $f(0)=0$, then there exists $a \in \mathbf{C}$ and $n \in \mathbf{N}$ such that $f(z)=a z^{n}$ for all $z \in \mathbf{C}$.

